

4.7 Further Probability Distributions

Question Paper

Course	DP IB Maths
Section	4. Statistics & Probability
Торіс	4.7 Further Probability Distributions
Difficulty	Very Hard

Time allowed:	110
Score:	/85
Percentage:	/100

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

The continuous random variable X has the probability density function

$$f(x) = \begin{cases} kex, & 0 \le x \le a \\ k(e^2 - e^x), & a \le x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

where a and k are constants.

a)

Given that f is a continuous function, find the values of a and k.

[3 marks]

Question 1b

(b) (i) Find $P(0.5 \le X \le 1.5)$ (ii) Find P(X > 1)

[5 marks]

Question 1c

(c) Find the median of X.

[3 marks]

Question 2a

The continuous random variable, X, follows a **uniform** distribution.

The probability density function is given by

$$f(x) = \begin{cases} k & a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$$

(a)
(i)
Write down an expression for k in terms of a and b.

(ii)

Write down an expression for E(X) in terms of a and b. (iii) Show that $Var(X) = \frac{(b-a)^2}{12}$.

[5 marks]

Question 2b

(b) Given that E(X) = 8.5 and Var(X) = 6.75, find the values of a and b.

[3 marks]

Question 3a

A company meeting lasts T hours. The continuous random variable T can be modelled by the probability density function

$$f(t) = \begin{cases} \frac{3}{4}t(t-2)^2 & 0 \le t \le 2\\ 0 & \text{otherwise} \end{cases}$$

(a)

Find the mean time of a meeting, giving your answer in minutes.

[3 marks]

Question 3b

(b) Show that the median meeting time is greater than the modal meeting time. Fully explain your solution.

[3 marks]

Question 4a

The continuous random variable X has probability density function

$$f(x) = \begin{cases} \frac{k}{x^3} & 2 \le x \le a \\ 0 & \text{otherwise} \end{cases}$$

a) Show that $k = \frac{8a^2}{a^2 - 4}$.

[3 marks]

Question 4b

(b) Given that
$$E(X) = \frac{20}{7}$$
 show that $a = 5$ and hence find the value of k .

[5 marks]

Question 4c

(c) Find the exact value of Var(X) .

[2 marks]

Question 5a

Paul is travelling around France to try to find the perfect baguette. The continuous random variable C represents the cost, in euros, of a baguette. It can be modelled by the probability density function

 $f(c) = \begin{cases} \frac{1}{36} (14c - c^2 - 40) & 4 \le c \le 10\\ 0 & \text{otherwise} \end{cases}$

a) Sketch the graph of y = f(c).

[3 marks]

Question 5b

(b) Explain why the mean cost of a baguette is €7.

[1 mark]

Question 5c

(c)

Given that the probability that a randomly selected baguette costs less than $\notin 9$ is $\frac{25}{27}$, find the probability

that a randomly selected baguette costs between ${\in}5$ and ${\in}9$

[2 marks]

Question 6a

The amount of time, t years, it takes for an investment to return a profit is modelled by a continuous random variable, T, with probability density function

$$f(t) = \begin{cases} \frac{1}{24} (a - (t - b)^2) & 0 < t < 3\\ 0 & \text{otherwise} \end{cases}$$

where a and b are integer constants.

(a)

Given that the mode of T is 1, find the values of a and b.

Question 6b

(b)

Find the expected length of time that a typical investor will have to wait before they make a profit. Give your answer in months, to the nearest month.

[2 marks]

Question 6c

(c)

A particular company owner will only commit to this investment if there is at least a 75% chance they will make a profit within the first 18 months. Determine whether the company owner will invest or not.

[2 marks]

Question 6d

(d) Give a criticism of the model.

[1mark]

Question 7

The continuous random variable, X, has probability density function given by

$$f(x) = \begin{cases} \frac{1}{6}(x-1), & 1 \le x \le 3\\ \frac{1}{12}(7-x), & 3 \le x \le 7\\ 0, & \text{otherwise} \end{cases}$$

Draw a box plot for the distribution of X. Mark the exact values of the quartiles on your diagram.

[6 marks]

Question 8a

The discrete random variable, X, has the probability distribution given in the table below

X	1	2	3	4	5	6	7	8	9
P(X=x)	$\frac{k-1}{27}$	$\frac{k}{27}$	$\frac{k+1}{27}$	$\frac{k-1}{27}$	$\frac{k}{27}$	$\frac{k+1}{27}$	$\frac{k-1}{27}$	$\frac{k}{27}$	$\frac{k+1}{27}$

where $k \in \mathbb{Z}^+$.

(a) Show that k = 3.

[1mark]

Question 8b

(b) Find (i) $P(X>4 \mid X \le 7)$ (ii) $P(X \text{ is prime } \mid X \le 5).$

Question 8c

(c) Find (i) E(4X+5)(ii) Var(6X+q), where q is a constant.

[4 marks]

Question 9a

A continuous random variable, X, has a probability distribution such that

$$P(X=x) = kx^3, \qquad 0 \le x \le 2$$

(a) Given that $P(X \le 2) = 1$, find the value of k.

[1 mark]

Question 9b

(b) Find (i) $P(X \le 1)$ (ii) $P(X \le 1.5)$ (iii) $P(1 \le X \le 1.5)$

[4 marks]

Question 9c

(c) Find (i) $P(X \le 1 | X \ge 0.5)$ (ii) $P(X \ge 1.5 | X \ge 1)$

Question 10a

The function defined by $f(x) = \frac{1}{54}x(x^2 - 8x + 17)$ has a local maximum when x = p and a local minimum when x = q.

(a)

Sketch the graph of f. State the values of p and q.

[3 marks]

Question 10b

The continuous random variable, X, has probability density function

$$g(x) = \begin{cases} f(x) & 0 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$$

(b) Briefly explain how it can be verified that g(x) is a suitable model for a probability density function.

[2 marks]

Question 10c

(c) Write down the mode of X.

[2 marks]

Question 10d

(d) Find the probability that (i) X is such that g(x) > g(p), (ii) X is such that g(x) < g(q).