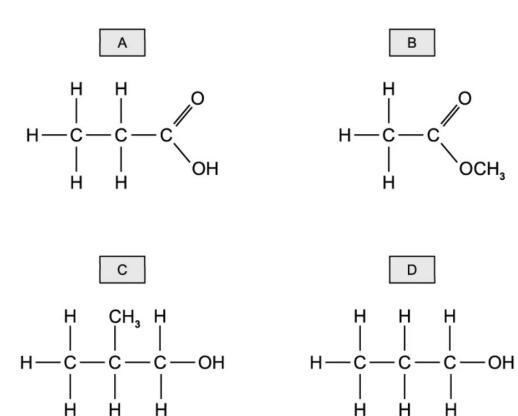


11.1 Spectroscopic Identification

Question Paper

Course	DP IB Chemistry
Section	11. Measurements & Data Processes
Торіс	11.1 Spectroscopic Identification
Difficulty	Medium

Time allowed:	20
Score:	/10
Percentage:	/100


Question 1

Which alcohol is **not** likely to have a fragment at *m*/*e* at 43 in its mass spectrum?

- A (CH₃)₂CHCH₂OH
- $\mathbf{B} \qquad \mathsf{CH}_3\mathsf{CH}(\mathsf{OH})\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3$
- C $CH_3CH_2CH_2CH_2OH$
- D CH₃CH₂CH(OH)CH₃

Question 2

Which of the compounds shown below is likely to have a fragment at m/e = 45 in its mass spectrum?

Question 3

Chlorine has two isotopes ³⁵Cl and ³⁷Cl. Assuming in the molecule $C_4H_6Cl_4$ there is only one hydrogen and one carbon isotope, how many molecular ion peaks will be seen in its mass spectrum?

Α	5
в	4
С	3
D	2

[1 mark]

Question 4

Bromine exists as two isotopes ⁷⁹Br and ⁸¹Br, which are found in almost equal abundance.

Which of the following statements is correct?

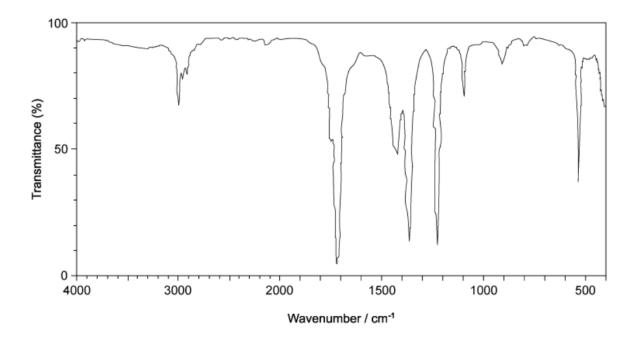
- A ⁷⁹Br is more reactive than ⁸¹Br
- **B** The mass spectrum of C_3H_7Br has two molecular ion peaks at 122 and 124
- **C** The atomic radius of ⁷⁹Br is less than the atomic radius of ⁸¹Br
- D The first ionisation energy of ⁷⁹Br is less than the first ionisation energy of ⁸¹Br

Question 5

Which alcohol is likely to have a fragment ion at m/e = 31 in its mass spectrum?

- A (CH₃)₂CHCH₂OH
- **B** CH₃CH(OH)CH₂CH₂CH₃
- C $CH_3CH_2CH_2C(OH)(CH_3)_2$
- D CH₃CH₂CH(OH)CH₃

[1mark]


Question 6

Which pair of compounds would you expect to both have a singly charged peak at m/e = 29 in the mass spectrum?

- A propan-1-ol and propanal
- **B** propanal and propanone
- **C** propan-2-ol and propanal
- **D** propan-1-ol and propan-2-ol

Question 7

The infrared spectrum of a compound is shown below.

Use the infrared absorptions, in wavenumbers, to identify the compound

bond	wavenumber range/ cm ⁻¹
O-H (alcohol)	3750 – 3200
C-H (alkane)	2962 – 2853
C-H (aldehyde)	2900 – 2820 and 2775 – 2700
C=O (aldehyde or ketone)	1740 - 1680

С

Which compound is shown by the infrared spectrum?

A propan-1-ol

B propan-2-ol

propanal

D

propanone

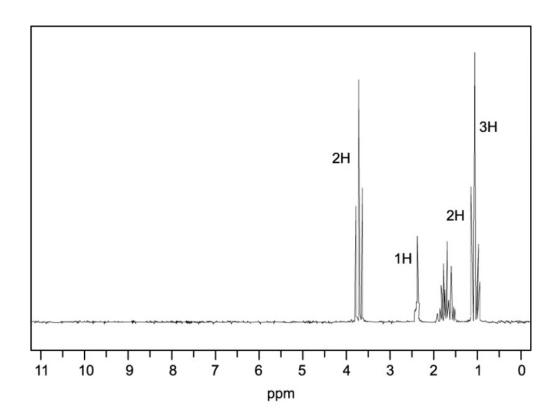
Question 8

Which of the ketones listed would **not** be expected to have a peak in its mass spectrum at m/e = 57?

- A hexan-3-one, $CH_3CH_2CH_2COCH_2CH_3$
- **B** pentan-3-one, $CH_3CH_2COCH_2CH_3$
- **C** 3-methylbutanone, (CH₃)₂CHCOCH₃
- **D** butanone, $CH_3CH_2COCH_3$

[1 mark]

Question 9


Which of the following statements about the mass spectrum of CH₃Br is correct?

- A There is one peak for the molecular ion with an *m*/*e* value of 44.
- **B** There is one peak for the molecular ion with an *m*/*e* value of 95.
- **C** The last two peaks have abundances in the ratio 3:1 and occur at *m/e* values of 94 and 96.
- **D** The last two peaks are of equal size and occur at *m*/e values of 94 and 96.

Question 10

Below is a ¹H NMR spectrum for an unknown organic compound. The relative areas under the peaks are labelled

Which of the following compounds could give this spectrum?

- A propan-1-ol, CH₃CH₂CH₂OH
- **B** propan-2-ol, CH₃CH(OH)CH₃
- **C** methyoxyethane, CH₃OCH₂CH₃
- **D** pentan-2-one, CH₃CH₂CH₂COCH₃