

20.2 Synthetic Routes

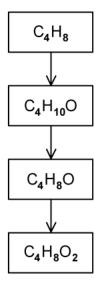
Question Paper

Course	DP IB Chemistry
Section	20. Organic Chemistry (HL only)
Topic	20.2 Synthetic Routes
Difficulty	Medium

Time allowed: 60

Score: /50

Percentage: /100



 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question la

a)

An organic reaction sequence is shown below.

State the IUPAC names of the four substances in the sequence.

[4 marks]

Question 1b

b)

Classify the reactions in (a) and give the names of the reagents in each step.

[6 marks]

Question 1c

c)

Give the reaction conditions for step 3 in (a)

[1 mark]

Question 1d

d)

Draw a displayed formula of an isomer of $C_4H_{10}O$ that gives two signals in an 1H NMR spectrum.

[1 mark]

Question 2a

a)

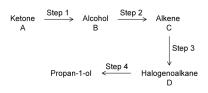
The following reaction pathway is used to produce Compounds $\bf A$ and $\bf B$, which when reacted together, form a branched ester molecule, Compound $\bf C$.

Suggest suitable reagents and conditions for the synthesis of Compound $\bf A$ via Step 1 and give the name for this type of reaction.

Page 3 of 9

 $Head to \underline{save my exams.co.uk} for more awe some resources$

[3 marks]


[6 marks]

Question 2b
b)
In order for the ester to be produced, the ketone in part (a) must be converted to another compound, B .
i)
Name and draw the structure of the molecule that is produced from Step 2.
ii)
Give the name of the type of reaction that is involved in Step 2 and suggest suitable reagents and conditions for the process.
[4 marks]
Question 2c
c)
Outline how ethanol can be synthesised from ethane in two steps. State the reaction conditions and reagents and name the type of reaction taking place.

Question 2d

d)

The four step synthesis to form propan-1-ol from a ketone is outlined below.

i)

Give the names of four possible substances ${\bf A}$ to ${\bf D}$

ii)

Give the reagents and conditions for Step 4.

[3 marks]

Headto <u>savemyexams.co.uk</u> for more awesome resources

Question 3a

a)

Propanal is a versatile organic building block used in the synthesis of plastics and rubber chemicals.

Propanal can be produced from propanoic acid in the following two-step reaction.

Step 1 Step 2

Propanoic acid \longrightarrow Propan-1-ol \longrightarrow Propanal

State the reaction type, including suitable reagents, for Steps 1 and 2.

[2 marks]

Question 3b

b)

Suggest why it is not possible to convert propanoic acid directly to propanal using the reagent you identified for Step 1 in (a).

[1 mark]

Question 3c

c)

Explain why Step 2, in (a), is completed by distillation.

[1 mark]

Question 3d

d)

Identify, explain your reasoning, which of the three organic compounds, from the reaction scheme in (a), would be distilled first.

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 4a

a)

State **four** factors that should be considered when designing a reaction scheme for the synthesis of a target molecule in industry.

[3 marks]

Question 4b

b)

1-(3-Amin ophenyl) ethanol can be synthesised according to the following three-step reaction scheme.

Step 1 involves a reaction at position 3 of the benzene ring of 1-phenylethan-1-one.

State the reaction type, including suitable reagents, for Step 1.

[2 marks]

Question 4c

c)

State a suitable reagent for Step 2, in (b).

[1 mark]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 4d

ď

In Step 3 of the reaction scheme from (b), compound \mathbf{C} is heated with hydrochloric acid in the presence of a tin catalyst to form the final product, 1–(3–aminophenyl)ethanol.

Explain why Step 3 is a reduction reaction.

[2 marks]

Question 5a

a)

Suggest a reaction scheme, using displayed formulae, that could be used to prepare a sample of propyl propanoate.

Conditions and reagents are not required.

[2 marks]

Question 5b

b)

One of the intermediates in the reaction scheme, from (a), has a molecular mass of 74.09 g mol⁻¹.

i)

State suitable reagents and conditions required to form this intermediate.

ii)

Describe how you could test that this intermediate has been formed.

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 5c

C)

Propanal and the intermediate $(M_r = 74.09)$ in the reaction scheme, from (a), are to be separated by distillation.

Explain which chemical will distil first.

[2 marks]

Question 5d

d)

One of the intermediates in the reaction scheme, from (a), has a molecular mass of $60.09 \, \mathrm{g} \, \mathrm{mol}^{-1}$.

i)

State suitable reagents and conditions required to form this intermediate.

ii)

Using Section 26 of the Data Booklet, describe how you could prove that this intermediate has been formed **without** reversing the reaction.

[2 marks]