

16.1 Rate Expression & Reaction Mechanism

Question Paper

Course	DP IB Chemistry	
Section	16. Chemical Kinetics (HL only)	
Торіс	16.1 Rate Expression & Reaction Mechanism	
Difficulty	Hard	

Time allowed:	10
Score:	/5
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

The potential energy level profile for the hydrolysis of a tertiary halogenoalkane is shown.

Which of the following conclusions can be deduced from the potential energy level profile?

- I. The reaction proceeds via an S_N mechanism
- II. The reactants are more stable than the products
- ${\sf III}.$ The rate-determining step is the first step of the reaction mechanism
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

SaveMyExams Head to savemy exams.co.uk for more a we some resources

Question 2

The rate information below was obtained for the following fourth order reaction at a constant temperature:

 $5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(l)$ Reaction rate / mol dm⁻³ s⁻¹ [Br⁻] / mol dm⁻³ [H⁺] / mol dm⁻³

Which rate expression is consistent with the data?

A. Rate = k [Br⁻] [BrO₃⁻] [H⁺]

B. Rate = $k [Br^{-}]^{2} [H^{+}]^{2}$

C. Rate = k [Br⁻] [BrO₃⁻] [H⁺]²

D. Rate = k [Br⁻]² [BrO₃⁻] [H⁺]

[1mark]

Question 3

The rate information below was obtained for the following reaction at a constant temperature:

$$C_2H_5Br(aq) + OH^-(aq) \rightarrow C_2H_5OH(aq) + Br^-(aq)$$

$[C_2H_5Br]$ / mol dm ⁻³	$[OH^{-}]$ / mol dm ⁻³	Rate / mol dm ⁻³ s ⁻¹
2.0 x 10 ⁻³	1.0 x 10 ⁻²	4.0 x 10 ⁻⁴
4.0 x 10 ⁻³	1.0 x 10 ⁻²	8.0 × 10 ⁻⁴
8.0 x 10 ⁻³	2.0 x 10 ⁻²	3.2 x 10 ⁻³

What is the correct equation to calculate the value of the rate constant, k?

A.
$$\frac{\text{rate}}{[C_2H_5Br] [OH^-]}$$
B.
$$\frac{[C_2H_5Br] [OH^-]}{\text{rate}}$$
C.
$$\frac{\text{rate}}{[C_2H_5Br] [OH^-]^2}$$
D.
$$\frac{\text{rate}}{\text{rate}}$$

D. $\frac{1}{[C_2H_5Br]^2[OH^-]^2}$

[1 mark]

Question 4

The mechanism for the following reaction between nitrogen(II) oxide and carbon monoxide is shown.

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

Step 1: $NO_2 + NO_2 = N_2O_4$ fast step

Step 2: $N_2O_4 + 2CO \rightarrow 2NO + 2CO_2$ slow step

Which rate expression is consistent with the mechanism?

A. Rate = $k [NO_2] [CO]^2$

B. Rate = $k [N_2O_4] [CO]^2$

C. Rate = $k [NO_2]^2 [CO]^2$

D. Rate = $k [N_2O_4] [CO]$

[1mark]

Question 5

The rate information below was obtained for the following reaction of aqueous solutions of F and G, in the presence of a homogeneous catalyst, H,

When the concentrations of F and G are doubled, the rate of reaction increases by a factor of four.

When the concentrations of F and H are doubled, the rate of reaction increases by a factor of eight.

Which rate expression is consistent with the data?

A. Rate = k [F]² [G]³

 $B.Rate = k[F]^2[H]$

C.Rate = k[F][G][H]

D. Rate = $k [F]^2 [H]^2$

[1mark]

Page 5 of 5