

20.2 Synthetic Routes

Question Paper

Course	DP IB Chemistry	
ection 20. Organic Chemistry (HL only)		
pic 20.2 Synthetic Routes		
Difficulty	Hard	

Time allowed: 10

Score: /5

Percentage: /100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

The equation below shows the conversion of propanal to propyl ethanoate.

What are the reagents used and the reactions taking place?

	Reaction 1	Reagents 1	Reaction 2
A	oxidation	K ₂ Cr ₂ O ₇ and H ₂ SO ₄	nucleophilic substitution (condensation)
В	reduction	NaBH ₄	nucleophilic substitution (condensation)
С	reduction	LiAlH ₄	oxidation
D	hydrogenation	H ₂	addition

[1 mark]

Question 2

But-1-ene reacts separately with HBr and H_2/Ni to give products X and Z respectively.

What are the major products of the reactions?

	X	Z
A.	CH ₂ BrCH ₂ CH ₂ CH ₃	$CH_3CH_2C \equiv CH$
B.	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₃
C.	CH ₃ CHBrCH ₂ CH ₃	CH ₃ CH ₂ C≡CH
D.	CH ₃ CHBrCH ₂ CH ₃	CH ₃ CH ₂ CH ₂ CH ₃

[1 mark]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 3

 $Methyl benzene \, can \, be \, converted \, into \, 4-methyl phenylamine \, in \, a \, multi-step \, reaction.$

Which order should the reagents be used to do this conversion?

	1st reagent	2nd reagent	3rd reagent
A.	conc. HNO ₃ /conc. H ₂ SO ₄	Sn/conc.HCl	NaOH
B.	Sn/conc.HCl	conc. HNO ₃ /conc. H ₂ SO ₄	NaOH
C.	Sn/conc.HCI	NaOH	conc. HNO ₃ /conc. H ₂ SO ₄
D.	NaOH	conc. HNO ₃ /conc. H ₂ SO ₄	Sn/conc.HCI

[1 mark]

Question 4

Which alcohol could not be produced by the reduction of an aldehyde or a ketone?

- A. 2,2-Dimethylbutan-1-ol
- B. Propan-2-ol
- C.3-Methylpentan-3-ol
- D. 2-Methylpentan-3-ol

[1 mark]

Question 5

Which molecule(s) can be both reduced by sodium borohydride, $NaBH_{4,}$ and oxidised by warm acidified potassium dichromate (VI)?

- I. CH₃CHBr(CH₃)₂CCHO
- II. CH₃CHOHCH₂CH₃
- III. (CH₃)₃CCHO
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]