

15.2 Entropy & Spontaneity

Question Paper

Course	DP IB Chemistry
Section	15. Energetics/Thermochemistry (HL only)
Торіс	15.2 Entropy & Spontaneity
Difficulty	Hard

Time allowed:	50
Score:	/41
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

a)

The equations for two separate reversible reactions are as follows:

Reaction \mathbf{A} 2SO₂(g) + O₂(g) = 2SO₃(g)

Reaction \mathbf{B} CO(g) + H₂O(g) = CO₂(g) + H₂(g)

Use the information in the following table to determine the enthalpy change, ΔH_r , for reaction **A**.

	SO ₂	O ₂	SO3	H ₂
ΔH ^Θ f /kJmol ⁻¹	-296.8	0	-395.7	0
S ^O /JK ⁻¹ mol ⁻¹	248.2	205.1	256.8	130.6

[2]

[2 marks]

Question 1b

b)

Using the information from the table in part a), calculate the standard entropy change, ΔS , of reaction **A**.

[2]

[2 marks]

Question 1c

c)

Use your answer to parts a) and b) to determine the temperature at which reaction **A** becomes feasible.

[2 marks]

Question 1d

d)

By using the data from part a) and section 12 of the data booklet, deduce if reaction **B** is feasible at a low temperature.

[4]

[4 marks]

Question 2a

a)

Magnesium carbonate decomposes at a relatively high temperature.

	MgCO ₃	MgO
ΔH ^θ f / kJ mol ^{−1}	-1095.8	-601.7
∆S [⊖] /Jmol ⁻¹	65.7	26.9

i)

Write an equation for the decomposition and use section 12 of the data booklet and the information given to determine the enthalpy change for the decomposition of magnesium carbonate.

[3]

ii)

Use section 12 of the data booklet and the information given to determine the standard entropy change for the decomposition of magnesium carbonate.

[2]

[5 marks]

Question 2b

b)

Using your answer to part a) to determine if the decomposition of magnesium carbonate is feasible at 280 $^{\circ}$ C.

[1]

[1 mark]

Question 2c

c)

Using your answer to part b) to determine the temperature, in ∞ , at which the decomposition of magnesium carbonate becomes feasible.

[3]

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3a

a)

Used in the production of polymers, methanol is manufactured in large quantities.

i)

State the equation for the combustion of methanol.

ii)

 $Comment \, on \, the \, entropy \, change \, of \, the \, reaction.$

[1]

[2]

[3 marks]

Question 3b

b)

Use section 12 of the data booklet to determine the enthalpy change, ΔH_r , for the production of methanol from carbon monoxide and hydrogen.

[3]

[3 marks]

Question 3c

c)

Use your answer to part b) and section 12 of the data booklet to calculate the free energy change, ΔG , for the formation of methanol from carbon monoxide and hydrogen at 300 K.

[3]

[3 marks]

Question 3d

d)

A student states that if the temperature is lowered for the formation of methanol, the reaction will become non-spontaneous. Comment on the student's statement.

[4]

[4 marks]

Question 4a

a)

The Ostwald process to produce nitric acid involves the oxidation of ammonia. The equation is shown below:

 $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g) \Delta H_r = -905.2 \text{ kJ mol}^{-1}$

	NH ₃ (g)	O ₂ (g)
S [⊕] (JK ⁻¹ mol ⁻¹)	192.5	205

The free energy change, ΔG^{Θ} , for the oxidation of ammonia at 298 K is -959 kJ mol⁻¹.

Use section 12 of the data booklet, to calculate the entropy change for the oxidation of ammonia in J K^{-1} mol⁻¹.

[3]

[3 marks]

Question 4b

b)

Use your answer to part a) and section 12 of the data booklet to determine the standard entropy of nitric oxide gas.

[3]

[3 marks]

Question 4c

c)

A 1.00 mol sample of NOCI was placed in reactor and heated to 227°C until the system reached equilibrium. The value for the equilibrium constant at this temperature is K_c is 4.5 x 10⁻⁴ mol dm⁻³.

 $2NOCI(g) \rightleftharpoons 2NO(g) + CI_2(g)$

Write an expression for $K_{\rm c}$.

[1]

[1 mark]

Question 4d

d)

Using section 1 and 2 in the data booklet determine the value for the free energy change, ΔG^{Θ} , in kJ mol⁻¹ for the reaction in part c).

[2]

[2 marks]

Page 8 of 8