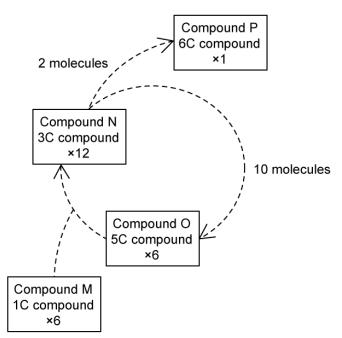


8.3 Photosynthesis

Question Paper


Course	DP IB Biology	
Section	8. Metabolism, Cell Respiration & Photosynthesis (HL Only)	
Торіс	8.3 Photosynthesis	
Difficulty	Hard	

Time allowed:	10
Score:	/5
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

The diagram below shows the Calvin cycle of the light-independent reactions.

Which of the following correctly identifies compound M to P?

	M	Ν	0	Р
Α.	carbon dioxide	ribulose bisphosphate	glycerate 3-phosphate	glucose
В.	carbon dioxide	glycerate 3-phosphate	ribulose bisphosphate	glucose
C.	Rubisco	glycerate 3-phosphate	ribulose bisphosphate	triose phosphate
D.	carbon dioxide	triose phosphate	glycerate 3-phosphate	ribulose bisphosphate

[1 mark]

Question 2

The following steps describe non-cyclic photophosphorylation involving the electron transport chain.

- I. Electrons from the photolysis of water replace lost electrons from photosystem II
- II. Light passes to primary pigments in photosystem I and II
- III. Electrons are passed from photosystem II to photosystem I via electron transport chain
- IV. Energy is released to synthesise ATP
- V. Electrons are excited to a higher energy level

Which of the following represents the correct sequence of the steps?

- $\mathsf{A}_{\cdot} ||_{\cdot} \rightarrow \mathsf{V}_{\cdot} \rightarrow |\mathsf{V}_{\cdot} \rightarrow |||_{\cdot} \rightarrow |.$
- $\mathsf{B} . \mathsf{V} . \rightarrow \mathsf{I} \mathsf{V} . \rightarrow \mathsf{I} \mathsf{I} \mathsf{I} . \rightarrow \mathsf{I} \mathsf{I} . \rightarrow \mathsf{I} .$
- $\mathsf{C}_{\cdot}:||_{\cdot}\to\mathsf{V}_{\cdot}\to|||_{\cdot}\to|\mathsf{V}_{\cdot}\to|_{\cdot}$

[1 mark]

Question 3

The following molecules are all involved with the process of photosynthesis.

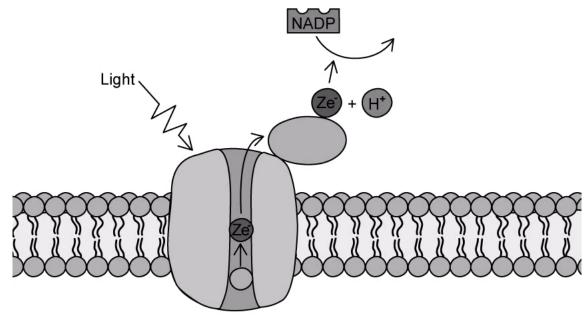
- I. Glucose
- II. ATP
- III. Water
- IV. Reduced NADP
- V. Carbon dioxide

Which of these molecules are involved with both the light dependent **and** light independent reactions?

A.I. and III.

B.II. and IV.

C.I., II. and IV.


D.II., IV. and V.

[1mark]

FaveMyExams Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4

Which of the following provides the best explanation of the process illustrated in the diagram?

- A. Photosystem I and ferredoxin is involved with the reduction of NADP so that the hydrogen can be used during the light independent stage of photosynthesis
- B. Photosystem II and ferredoxin is involved with the reduction of NADP so that the hydrogen can be used during the light independent stage of photosynthesis
- C. Photosystem I and plastoquinone is involved with the reduction of NADP so that the hydrogen can be used during the light independent stage of photosynthesis
- D. Photosystem I and ferredoxin is involved with the reduction of NADP so that the hydrogen can be used during the light dependent stage of photosynthesis

[1mark]

Question 5

Which of the following statements is **not** correct with regards to chemiosmosis in photosynthesis?

- I. Protons move down their concentration gradient through ATP synthase located in the chloroplast membrane
- II. The photolysis of water provides protons needed for chemiosmosis to occur
- III. ADP is phosphorylated to ATP due to the energy released by the movement of electrons down the electron transport chain
- IV. A high concentration of protons build up outside the intermembrane space, creating a concentration gradient
- A.I. and IV. only
- B. II. and III. only
- C.I., III. and IV.
- D.II., III. and IV.