5.6 Kinematics

Question Paper

Course	DP IB Maths
Section	5. Calculus
Topic	5.6 Kinematics
Difficulty	Medium

Time allowed: 70

Score: /55

Percentage: /100

Question la

A skydiver jumps from a moving aircraft at a point directly above a fixed point, *O*, on the ground. The trajectory of the skydiver is then modelled by the function

$$h(x) = 3200 - 0.5x^2$$

where h m is the height of the skydiver above the ground and x m is the horizontal distance along the ground from point O.

- (a) (i) Explain the significance of the value 3200 in the model.
 - (ii) Calculate the horizontal distance the skydiver covered upon landing.

[2 marks]

Question 1b

(b) Sketch a graph of h against x.

[2 marks]

Question 1c

(c) Explain why the model is not suitable for values of x larger than 80 m.

[1 mark]

Question 2a

A particle moves along a horizontal line starting at the point *O*. The displacement-time graph for the first 20 seconds of its motion is shown below. Displacement is measured in metres.

- (a) (i) Write down the displacement of the particle after 2 seconds.
 - (ii) Write down the displacement of the particle after 4 seconds.

Question 2b

[1 mark]

Question 2c

(c) Find the speed of the particle between 7 and 10 seconds.

[1 mark]

Question 2d

(d) Find the total distance travelled by the particle after 20 seconds.

[2 marks]

Question 3a

A cricket ball is projected directly upwards from ground level. The motion of the cricket ball is modelled by the function

$$h(t) = 13t - 4.9t^2 \qquad t > 0$$

where h metres is the height of the cricket ball above ground level after t seconds.

(a) Find the times at which the cricket ball is exactly 3 m above the ground.

Question 3b

Question 3e

(e) Find the velocity of the cricket ball at t = 1 second.

Question 4a

A soft ball is thrown upwards from the top of a 10 m tall building. The height, h m of the ball above the ground after t seconds is modelled by the function

$$h(t) = H + 7.8t - 4.9t^2 \qquad t > 0$$

(a) Write down the value of H.

[1 mark]

Question 4b

(b) Find the height of the ball after 2 seconds.

[2 marks]

Question 4c

(c) Find the time at which the ball is at the same height as it was when thrown.

Question 4d

[2 marks]

Question 4e

(e) Find h''(t) and hence show that the acceleration at any time is -9.8 m/s^2 .

[3 marks]

Question 5a

A particle moves along a straight line with a velocity, $v \text{ ms}^{-1}$, given by $v = 2^t - 2$ where t is measured in seconds such that $0 \le t \le 4$.

(a) Find the acceleration of the particle at time t=2.

Question 5b

[1 mark]

Question 5c

(c) Find the total distance travelled by the particle.

[3 marks]

Question 6a

A particle is found to have an acceleration, $a \text{ ms}^{-2}$, according to the function

$$a = \frac{1}{t^2} + \sin t$$
, where $t \ge 1$

(a) Find an expression for the velocity, v, of the particle given that v(1) = 1.

[4 marks]

Question 7d

(d)	Find	the	accele	ration	of the	particle	at the	instant	it first	change	s direction
l	u	I III u	uic	accere	lation	or the	particic	at the	mstant	It III St	Change.	3 an cenon

[3 marks]

Question 7e

(e) Find the displacement of the particle from its starting point to the point when t = 5.

[4 marks]