

7.3 The Structure of Matter

Question Paper

Course	DP IB Physics
Section	7. Atomic, Nuclear & Particle Physics
Topic	7.3 The Structure of Matter
Difficulty	Hard

Time allowed: 20

Score: /10

Percentage: /100

Question 1

The diagram is an example of a 'baryon decuplet'. Baryons are organised along horizontal and diagonal axes, as shown in the diagram below.

What is the quark structure of the Ξ^{*-} bayron?

- $A. \overline{u}s$
- B. uss
- C. dss
- D. uds

[1 mark]

Question 2

A collision between particles creates 4 mesons:

$$s\overline{u} + d\overline{s} + X + Y$$

The overall charge and strangeness of the 4 mesons is zero.

What are possible quark combinations for X and Y?

	X	Υ
Α	du	$s\overline{d}$
В	$u\overline{s}$	$u\overline{d}$
С	$s\overline{s}$	ud
D	$u\overline{s}$	$s\overline{s}$

Page 2 of 7

[1 mark]

Question 3

The Σ^0 baryon has strangeness of –1 and is produced through the strong interaction between a π^+ meson and a neutron.

$$\pi^+ + n \to \Sigma^0 + X$$

What is the quark composition of particle X?

- $A. u\overline{s}$
- B. uud
- $C.u\overline{d}$
- D. uus

[1 mark]

Question 4

Particles can be organised in a plot known as the 'eightfold way', as shown in the diagram below.

What are the quark compositions of Σ^+ , Σ^- , Ξ^0 and Ξ^- ?

	Σ+	Σ-	ΞO	Ξ-
Α	uus	dds	uds	dss
В	uud	dss	udd	ddd
С	uus	dds	uss	dss
D	uud	ddd	uss	dds

Page 3 of 7

[1 mark]

Question 5

The K^- is an example of a meson with strangeness –1.

Which of the following combinations of particles could the K⁻ particle decay to?

- A. $\pi^+ + \pi^- + e^-$
- B. $\pi^0 + \pi^- + n$
- C. $\pi^- + e^- + \overline{v}_e$
- D. $\pi^0 + \mu^- + \overline{v}_\mu$

[1 mark]

Question 6

Which of the four hadrons shown could be Ξ^0 ?

[1 mark]

Question 7

None of the following decay equations for baryons are permitted.

Equation 1:
$$n \rightarrow p + e^- + v_e$$

Equation 2:
$$\Delta^+ \rightarrow \pi^+ + \pi^0$$

Equation 3:
$$p \rightarrow n + e^- + v_e$$

Equation 4:
$$\equiv 0 \rightarrow p + \overline{v} + \pi^0$$

Which property is not conserved in each equation?

	Equation 1	Equation 2	Equation 3	Equation 4
Α	charge	baryon number	charge and lepton number	baryon number
В	lepton number	baryon number	charge and lepton number	charge and lepton number
С	baryon number	lepton number	baryon number	lepton number and baryon number
D	lepton number	charge	charge	charge

[1 mark]

Question 8

The charmed sigma particle, $\Sigma_c^{+\,+}$ decays through the following equation:

$$\Sigma_c^{++} \to \Lambda_c^+ + \pi^+$$

Both Σ_c^{++} and Λ_c^+ contain one charm quark and have strangeness of 0.

Which of the following could be the quark structure of the Σ_c^{++} and the $\Lambda_c^{+}?$

	Σ _c ++	$\Lambda_{ m c}^+$
Α	ddc	$\overline{u}c$
В	udc	dsc
С	иис	udc
D	udc	иис

[1 mark]

Question 9

The following Feynman diagram shows the baryons and leptons in a nuclear decay

Which of the four Feynman diagrams, \mathbf{A} to \mathbf{D} , is physically equivalent to the diagram given for this decay?

[1 mark]

Question 10

The Higgs Boson was discovered at CERN in 2012. It is not stable and decays into other particles.

Which of the following could not be a possible decay pathway for the Higgs Boson?

- $\mathsf{A.}\ W^+ + W^-$
- $\mathsf{B.}\,p + e^- + v_e$
- C. γγ
- D. $b\overline{b}$

[1 mark]