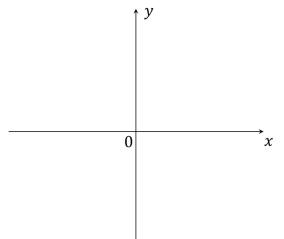


2.8 Inequalities

Question Paper

Course	DP IB Maths
Section	2. Functions
Торіс	2.8 Inequalities
Difficulty	Medium

Time allowed:	70
Score:	/58
Percentage:	/100


F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

Consider the functions $f(x) = 3x^2 + x - 2$ and $g(x) = -2x^2 + 3x + 5$.

a)

Sketch the graph of the function f(x) on the axes provided, labelling the vertex as well as the x- and y-intercepts.

[3 marks]

Question 1b

b) Solve the inequality f(x) < g(x).

Question 2

Solve the inequality $5x^2 - 8x - 48 \ge 2x^2 + 4x - 12$.

[4 marks]

Question 3a

Consider the inequality $\frac{x^2 - 3x - 10}{x - 1} < 0.$

a)

Explain why you need to consider the cases x < 1, x = 1 and x > 1 separately when rearranging the inequality to find a solution.

[2 marks]

Question 3b

b) Solve the inequality.

[5 marks]

Question 4a

The functions and are defined such that $f(x) = \frac{x+4}{2x-1}$ and g(x) = 2x-4.

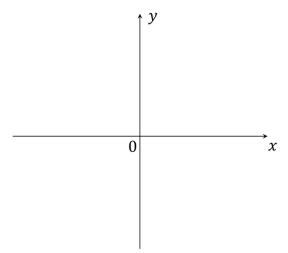
Given that f has the largest possible valid domain,

a) State the domain and range of f.

[2 marks]

Question 4b

b) Solve the inequality $f(x) \le g(x)$.



Question 5a

Consider the function $f(x) = -2 \sin x$ in the interval $-2\pi \le x \le 2\pi$.

a)

Sketch a graph of the function over the given interval on the axes provided, labelling all *x*-intercepts as well as local minima and maxima.

[3 marks]

Question 5b

b) Solve the inequality f(x) > 1.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6

Solve the inequality $\frac{3x-2}{5} + 3 > \frac{4x-4}{5}$

[4 marks]

Question 7a

Consider the functions $f(x) = x^2 - 9 + \frac{4}{x}$ and g(x) = -x + 5.

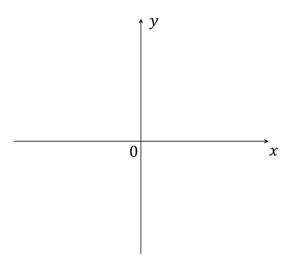
a)

Sketch the graphs of f(x) and g(x), clearly labelling any points of intersection or asymptotes.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 7b

b) Determine the values of x such that $f(x) \ge g(x)$.


[3 marks]

Question 8a

Consider two functions, $f(x) = \ln(x+3) + 4$ and $g(x) = e^{x-3}$.

a)

Sketch both functions on the axes below, clearly labelling the asymptotes and points of intersection.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 8b

b) Hence or otherwise, solve the inequality $f(x) \ge g(x)$.

[2 marks]

Question 9a

Consider the polynomial $q(x) = x^3 - 8x^2 + 19x - 12$.

a)

Given that (x - 4) is a factor of q(x), determine the x-intercepts of q(x).

[4 marks]

Question 9b

b) Hence or otherwise, solve the inequality $x^3 + 19x \le 8x^2 + 12$.

[3 marks]

Question 10

Consider the two functions $f(x) = 2 \sin 2x$ and $g(x) = \cos x$, both having the domain $0 \le x \le 2\pi$.

Solve the inequality $f(x) \ge g(x)$.

[3 marks]

Page 9 of 9