

20.1 Types of Organic Reactions

Question Paper

Course	DP IB Chemistry
Section	20. Organic Chemistry (HL only)
Торіс	20.1 Types of Organic Reactions
Difficulty	Easy

Time allowed:	60
Score:	/42
Percentage:	/100

Question la

a) Define the term nucleophile.

> [2] [2 marks]

Question 1b

b) Explain why the hydroxide ion, OH^- , is a stronger nucleophile than water.

Question Ic

Question 1d

c)

d)

State the two ways a nucleophilic substitution reaction can occur.

State the the name of the mechanism occurring in the image below which will form ethanol in one step.

[1]

[1mark]

[2 marks]

[2]

[1]

[1mark]

Question 2a

a)

The start of the electrophilic addition mechanism for the addition of hydrogen bromide to ethene is shown below:

Complete the mechanism by:

i)

Adding **two** curly arrows and the partial charges, $\delta + / \delta -$, to the reactants.

ii)

Adding the correct charge to the carbocation intermediate, adding the anion, including its lone pair, and **one** curly arrow to the intermediate step.

[3]

[3]

[6 marks]

Question 2b

b)

Draw the product of the reaction in part a).

[1]

[1mark]

Question 2c

c)

The electrophilic addition of hydrogen bromide to but-1-ene results in two isomeric products - one is a major product and one is a minor product. The first steps of the electrophilic addition mechanism are shown below:

i)

Draw the displayed formula of the secondary carbocation intermediate that forms the major product.

[1]

ii)

Draw the displayed formula of the primary carbocation intermediate that forms the minor product.

[1]

[2 marks]

Question 2d

d) Explain why the secondary carbocation is more stable than the primary carbocation.

FaveMyExams Head to <u>savemyexams.co.uk</u> for more awesome resources

	[1 mark]
Question 3a a) Name the type of mechanism that benzene will undergo in order to form nitrobenzene.	[1] [1 mark]
Question 3b b) State the reagents required to form nitrobenzene from benzene.	[1] [1 mark]
Question 3c c) Phenylamine, $C_6H_5NH_2$, can be formed from nitrobenzene. State the reagents required.	[2] [2 marks]
Question 3d d) Outline the mechanism for the formation of nitrobenzene from benzene.	[3] [3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4a

a) State what is meant by the term protic, polar solvent.

Question 4b

b) State what is meant by the term *aprotic*, *polar solvent*.

Question 4c

c) State which type of solvent is best suited to the following nucleophilic substitution reactions.

i) S_N1 [1] ii) S_N2

[2 marks]

[2]

[2]

[2 marks]

[2 marks]

[1]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4d

d) Identify the type of reaction that converts aldehydes and ketones to their corresponding parent alcohol.	[1] [1 mark]
Question 4e e) Name a reducing agents that can convert aldehydes and ketones into their corresponding alcohols.	[1] [1 mark]
Question 5a	
a) 2-chloro-2-methylpropane is reacted with aqueous sodium hydroxide in ethanol and heated under reflux.	
i) Deduce the class of halogenoalkane that 2-chloro-2-methylpropane belongs to.	נוז
ii) State the name of the product formed in this reaction.	[1]
iii) State the type of mechanism that this reaction will favour.	[1]

[3 marks]

Question 5b

b)

Outline the mechanism for the reaction given in part a).

[4 marks]

Question 5c

c) State the type of bond breaking that occurs in this mechanism.

[1]

[1 mark]

Question 5d

d)

A student stated that changing the halogenoalkane for the reaction in part a) to 2-iodo-2-methylpropane, the reaction would be quicker. Is the student correct? Explain your answer.

[3]

[3 marks]