

5.3 Bond Enthalpy

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Topic	5.3 Bond Enthalpy
Difficulty	Hard

Time allowed: 50

Score: /39

Percentage: /100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

a)

Define the term average bond enthalpy.

[2]

[2 marks]

Question 1b

b)

Determine the bond dissociation energy, in kJ mol⁻¹, for one mole of O-F bonds using the following equation and section 11 of the data booklet. Give your answer to 3 significant figures.

$$F_2(g) + \frac{1}{2}O_2(g) \rightarrow OF_2(g) \Delta H_r = +28 \text{ kJ mol}^{-1}$$

[3]

[3 marks]

Question 1c

C)

The reaction of ethanoyl chloride, CH_3COCI , and ethanol form an ester. State the equation for this reaction.

[2]

[2 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question 1d

d)

Use section 11 in the data booklet to deduce the energy required, in kJ mol^{-1} , to break the bonds.

[2]

[2 marks]

Question le

ല)

Deduce the energy released, in kJ mol⁻¹, when the bonds are formed and therefore the enthalpy change for the reaction.

[3]

[3 marks]

Question 2a

a)

Methane reacts violently with fluorine to form carbon tetrafluoride and hydrogen fluoride

Formulate the equation for this reaction.

[2]

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 2b

b)

Use your answer to part a) and section 10 of the data booklet to calculate the following:

i)

The energy required, in kJ, to break the bonds for the reaction between methane and fluorine.

[1]

ii)

The energy released, in kJ, to form the bonds for the reaction between methane and fluorine.

[1]

iii)

The enthalpy change, ΔH_r , in kJ mol⁻¹ for this reaction.

[2]

[4 marks]

Question 2c

c)

A student suggested that one reason for the high reactivity of fluorine is a weak F-F bond. State whether the student is correct. Justify your answer.

[2]

[2 marks]

Question 2d

d)

Sketch a labelled energy diagram for the reaction of methane and fluorine.

[3]

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

[3 marks]

Question 3a

a)

Hydrazine has the formula N_2H_4 and is used as a rocket fuel (e.g. for the Apollo moon rockets). It burns in the following reaction for which the enthalpy change is -583 kJ mol⁻¹.

$$N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

Sketch the Lewis structure of hydrazine, N₂H₄.

[2]

[2 marks]

Question 3b

b)

 $Use \ section \ 11 \ of \ the \ Data \ booklet \ and \ the \ information \ in \ part \ a) \ to \ deduce \ the \ bond \ enthalpy, \ in \ kJ \ mol^{-1}, for \ the \ N-N \ bond.$

[3]

[3 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 3c

C)

Outline why the value of enthalpy of reaction calculated from bond enthalpies is less accurate.

[1]

[1 mark]

Question 4a

a)

Ozone prevents UV radiation emitted from the Sun reaching the surface of the Earth. Draw the resonance Lewis structures of ozone.

[3]

[3 marks]

Question 4b

h)

By using equations, state the environmental impact of CFCs on the ozone layer.

[4]

[4 marks]

 $Head to \underline{savemy exams.co.uk} for more awe some resources\\$

Question 4c

C)

The destruction of ozone is a significant environmental issue as ozone can absorb frequencies of ultraviolet radiation that oxygen can not.

Explain with reference to the structure and bonding of oxygen and ozone why this occurs.

[3]

[3 marks]