

16.2 Activation Energy

Question Paper

Course	DP IB Chemistry
Section	16. Chemical Kinetics (HL only)
Торіс	16.2 Activation Energy
Difficulty	Hard

Time allowed:	10
Score:	/5
Percentage:	/100

Question 1

Which of the following statements about the constant A in the Arrhenius equation are correct?

I. It is a steric factor for the fraction of collisions where the particles have the correct mutual orientation

- II. It takes into account the energy of the colliding particles
- III. It takes into account the number of collisions in a chemical reaction
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 2

The following information was obtained for the rate constant, k, for a reaction at 25 °C.

k	Ea	R
3.46 × 10 ⁻⁸ s ⁻¹	96.2 kJ mol ⁻¹	8.31 J K ⁻¹ mol ⁻¹

Which expression correctly represents how to calculate the constant, A?

A.
$$A = \frac{(3.46 \times 10^{-8})}{e^{(-96.2/8.31 \times 25)}}$$

B. $A = \frac{(3.46 \times 10^{-8})}{e^{(-96200/8.31 \times 298)}}$

C.
$$A = \frac{e^{(-96200 / 8.31 \times 298)}}{(3.46 \times 10^{-8})}$$

D. $A = (3.46 \times 10^{-8}) \times e^{(-96200 / 8.31 \times 298)}$

[1mark]

 Save My Exams

 Head to savemyexams.co.uk for more awesome resources

Question 3

Which is the correct expression to calculate the activation energy? ($R = 8.31 J K^{-1} mol^{-1}$)

A.
$$E_a = \frac{1.90}{0.00020} \times (8.31 \times 10^{-3})$$

B. $E_a = \frac{-1.90}{0.00020} \times 8.31$
C. $E_a = \frac{-1.90}{0.00020} \times (8.31 \times 10^{-3})$
D. $E_a = \frac{1.90}{0.00020} \times 8.31$

[1 mark]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 4

The rate constant data for a reaction at two different temperatures is shown.

Temperature / °C	Rate constant / mol ⁻¹ dm ³ s ⁻¹
5	6.81×10 ⁻⁶
35	6.11×10 ⁻⁵

Using the following equation, which expression is the correct calculation for the activation energy of the reaction, in kJ mol⁻¹? ($R = 8.31J K^{-1} mol^{-1}$)

$$\ln\frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

$$A. E_{a} = \frac{\ln \frac{6.11 \times 10^{-5}}{6.81 \times 10^{-6}} \times 8.31}{\left(\frac{1}{308} - \frac{1}{278}\right)}$$

$$B. E_{a} = \frac{\ln \frac{6.81 \times 10^{-6}}{6.11 \times 10^{-5}} \times \left(8.31 \times 10^{-3}\right)}{\left(\frac{1}{278} - \frac{1}{308}\right)}$$

$$C. E_{a} = \frac{\ln \frac{6.11 \times 10^{-5}}{6.81 \times 10^{-6}} \times 8.31}{\left(\frac{1}{278} - \frac{1}{308}\right)}$$

$$D. E_{a} = \frac{\ln \frac{6.81 \times 10^{-6}}{6.11 \times 10^{-5}} \times \left(8.31 \times 10^{-3}\right)}{\left(\frac{1}{308} - \frac{1}{278}\right)}$$

[1 mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5

When the temperature increases from $25 \,^{\circ}$ C to $55 \,^{\circ}$ C, the rate constant for the reaction increases by a factor of 1.45.

$$\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

Using the equation above, which expression is the correct calculation for the activation energy of the reaction? ($R = 8.31 \text{ K}^{-1} \text{ mol}^{-1}$)

$$A. E_{a} = \frac{(\ln 1.45) \times (8.31 \times 10^{-3})}{\left(\frac{1}{55} - \frac{1}{25}\right)}$$

$$B. E_{a} = \frac{(\ln 1.45) \times (8.31 \times 10^{-3})}{\left(\frac{1}{328} - \frac{1}{298}\right)}$$

$$C. E_{a} = \frac{\left(\ln \frac{1}{1.45}\right) \times (8.31 \times 10^{-3})}{\left(\frac{1}{328} - \frac{1}{298}\right)}$$

$$D. E_{a} = \frac{\left(\ln \frac{1.45}{1}\right) \times \left(8.31 \times 10^{-3}\right)}{\left(\frac{1}{55} - \frac{1}{25}\right)}$$

[1mark]