

3.8 Further Trigonometry

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.8 Further Trigonometry
Difficulty	Medium

Time allowed:	80
Score:	/62
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Show that

(i)

 $\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\,\theta$

(ii) $\tan(\theta - \pi) = \tan \theta$

(iii) $\sin\left(\theta - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\sin\theta - \cos\theta)$

[6 marks]

Question 2

Let
$$f(x) = \tan(x + \pi) \sin\left(x + \frac{\pi}{2}\right)$$
 where $0 < x < \frac{\pi}{2}$.

By using the compound angle formulae, express f(x) in terms of $\sin x$.

[4 marks]

Question 3

Consider the equation $\cos(x-45) = 2 \sin x$ in the interval $0 \le x \le 360^{\circ}$.

Find an exact value for $\tan x$.

[5 marks]

Question 4a

a) Express $\cos 4 heta$ in terms of $\cos 2 heta.$

[1 mark]

Question 4b

b) Hence, show that $\cos 4\theta = 8\cos^2 \theta (\cos^2 \theta - 1) + 1$.

[5 marks]

Question 5

Given that $\tan A = \frac{\sqrt{3}}{2}$, solve the equation $\tan (A + x) = \frac{4}{5}$ in the interval $0 \le x \le 360^{\circ}$.

[6 marks]

Question 6 Prove that $\cos 3x \equiv 4 \cos^3 x - 3 \cos x$.

Page 4 of 8

[6 marks]

Question 7

Solve the equation $\sin 2x - \cos 2x = \frac{\sin x + \cos x}{2} - 1$ for the interval $-\pi < x < 0$.

[7 marks]

Page 5 of 8

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 8a

a) Show that $1 - \cos 2x = 2 - 2\cos^2 x$

[2 marks]

Question 8b

b)	
$\frac{1}{2x-1}$	$\cos x - \sin x$
Show that $\frac{1}{\cos 2x} - \tan 2x =$	$\cos x + \sin x$

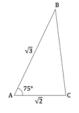
[5 marks]

Question 9a

a) Find the exact values for tan x given that $\tan^2 x + 4 \tan x + 1 = 0$

[3 marks]

Question 9b


b)

Hence, solve the equation $\frac{\tan x}{2\tan x + 1} = \tan 2x$ algebraically for the interval $0 \le x \le 2\pi$.

[5 marks]

Question 10a

The following diagram shows the triangle ABC where $AB = \sqrt{2}$, $AC = \sqrt{3}$ and $BAC = 75^{\circ}$.

a) By writing 75° as $30^{\circ} + 45^{\circ}$ find the value of sin(75°).

[3 marks]

Question 10b

b)

Find the area of the triangle, giving your answer in the form $\frac{a+\sqrt{b}}{c}$, where $a, b, c \in \mathbb{Z}$.

[4 marks]