

14.1 More Structures & Shapes

Question Paper

Course	DP IB Chemistry
Section	14. Chemical Bonding & Structure (HL only)
Торіс	14.1 More Structures & Shapes
Difficulty	Easy

Time allowed:	10
Score:	/5
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Which of the following can form a sigma (σ) bond?

- I. Overlap between an s-orbital and a p-orbital
- II. Overlap between two s-orbitals
- III. Overlap between two p-orbitals
- A. I only
- B. I and II only
- C. II and III only
- D. I, II and III

[1 mark]

Question 2

What is the correct number of sigma (σ) and pi (π) bonds in ethanoic anhydride, CH₃COOCOCH₃?

	Number of sigma (σ) bonds	Number of pi (π) bonds
Α.	10	4
В.	10	2
C.	12	2
D.	12	4

[1 mark]

Question 3

Which element does **not** form stable compounds that break the octet rule?

- A. Sulfur
- B. Oxygen
- C.Boron
- D. Chlorine

Head to <u>savemyexams.co.uk</u> for more awesome resources

[1mark]

Question 4

What are the bond angles in a molecule with five electron domains, XY_5 ?

	Axial bond angles / °	Equatorial bond angles / °
Α.	90	90
В.	120	90
C.	90	120
D.	120	120

[1 mark]

Question 5

What is the correct formula to work out the formal charge on an atom?

A. FC = (Number of valence electrons) - $\frac{1}{2}$ (Number of bonding electrons) - (Number of non-bonding electrons)
B. FC = (Number of valence electrons) - (Number of bonding electrons) - (Number of non-bonding electrons)
C.FC = (Number of valence electrons) - (Number of non-bonding electrons) - (Number of bonding electrons)
D. FC = (Number of valence electrons) - $\frac{1}{2}$ (Number of non-bonding electrons) - (Number of bonding electrons)

[1 mark]