

17.1 The Equilibrium Law

Question Paper

Course	DP IB Chemistry
Section	17. Equilibrium (HL only)
Торіс	17.1 The Equilibrium Law
Difficulty	Hard

Time allowed:	50
Score:	/40
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

a)

A 0.680 mol sample of SO₃ is introduced into a 3.04 dm³ reaction container and allowed to reach equilibrium at temperature T.

32% of the SO₃ had decomposed.

Calculate the value for K_c in this reaction, giving your answer to 2 significant figures.

 $2 \text{ SO}_3(g) = 2 \text{ SO}_2(g) + \text{O}_2(g)$ $\Delta H = +196 \text{ kJ mol}^{-1}$

[6]

[6 marks]

Question 1b

b)

The size of the container for the reaction in part (a) is decreased.

State the effect if any on the equilibrium constant, K_c , and the position of equilibrium. Justify your answer.

[4]

[4 marks]

Question lc

C)

The temperature of the reaction in part (a) is increased. State the effect, if any, on the equilibrium constant, K_c , and the position of equilibrium. Justify your answer.

[3]

[3 marks]

Question 1d

d)

Comment on whether the reaction in part (a) is likely to take place spontaneously at temperature T.

[2]

[2 marks]

Question 2a

a)

A mixture of 1.32 moles of E, 1.49 moles of F and 0.752 moles of G were placed into a 5.0 dm³ container at temperature, T, and allowed to reach equilibrium. At equilibrium, the number of moles of E was 1.86.

Calculate the value of the equilibrium constant, K_c , to 3 significant figures.

 $2E(g) \Rightarrow 2F(g) + G(g)$ $\Delta H = -143 \text{ kJ mol}^{-1}$

[5]

[5 marks]

Page 3 of 7

Question 2b

b)

Reactants G and H react together to form products J and K according to the equation

 $3G + H \Rightarrow 4J + K$

A beaker contained 35 cm³ of 0.18 mol dm⁻³ of an aqueous solution of G.

 8.41×10^{-3} moles of H and 3.1×10^{-3} moles of J were also added to the beaker. The equilibrium mixture contained 4.1×10^{-3} moles of G.

Calculate the number of moles of *H*, *J* and *K* at equilibrium.

[5]

[5 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2c

C)

Using sections 1 and 2 of the data booklet, calculate the equilibrium constant at 300 K for the oxidation of iron:

2Fe(s) +
$$\frac{3}{2}$$
O₂(g) → Fe₂O₃(s)
ΔH^Θ = -824.2 kJ mol⁻¹
ΔS^Θ = -270.5 J mol⁻¹

[3]

[3 marks]

Question 2d

d)

 $Suggest what the value for K_c calculated in part (c) suggests about the equilibrium position for the oxidation of iron.$

[1]

[1mark]

Question 3a

a)

Diesters are compounds often used as synthetic lubricants for machinery such as compressors. The reaction below shows the formation of a diester from propanoic acid and propane-1,3-diol.

 $2CH_3CH_2COOH + HOCH_2CH_2CH_2OH = C_9H_{16}O_4 + 2H_2O$

At equilibrium, the reaction mixture contained 3.25 moles of CH_3CH_2COOH , 1.15 moles of $HOCH_2CH_2CH_2OH$, and 1.18 moles of $C_9H_{16}O_4$.

The value for K_c at temperature, T, is 1.29. Calculate the concentration of water in the reaction mixture at equilibrium. Give your answer to 3 significant figures.

[3]

[3 marks]

Question 3b

b)

A student deduced that in order to calculate the value of K_c for the reaction in part (a) you must work out the concentrations using the overall volume.

Is the student correct? Justify your answer.

[2]

[2 marks]

Question 3c

c)

Using sections 1 and 2 of the data booklet, determine the value for ΔG for the reverse reaction in part(a) given that temperature T= 30°C. Give your answer, in kJ, to 2 significant figures.

[2]

[2 marks]

Question 3d

d)

The reverse reaction in part (a) is slightly endothermic. At a different temperature, T_2 , the value for ΔG decreases to -0.52 kJ mol^{-1.}

State whether the new temperature, T_2 , is higher or lower than the original temperature. Justify your answer.

[4]

[4 marks]

