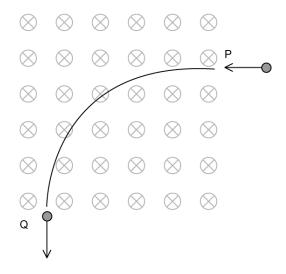


5.4 Magnetic Effects of Electric Currents


Question Paper

Course	DP IB Physics
Section	5. Electricity & Magnetism
Торіс	5.4 Magnetic Effects of Electric Currents
Difficulty	Medium

Time allowed:	70
Score:	/51
Percentage:	/100

Question la

A proton of mass *m* and electric charge q enters a region of magnetic field at point P and exits at point Q. The speed of the proton at P is *v*. The path followed by the proton is a quarter of a circle.

(a) State and explain whether the speed of the proton at P is the same as the speed at Q.

[3 marks]

Question 1b

(b) Outline why the path of the proton is circular.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1c

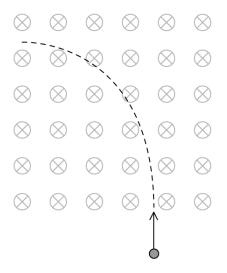
(c)

Show that the radius of the circular path is given by $R = \frac{mv}{qB}$, where B is the magnetic flux density.

[2 marks]

Question 1d

The speed of the proton is 3.2×10^6 ms⁻¹ at P and the magnetic flux density is 0.21 T.


(d)

Show that the radius of the path is 16 cm.

[2 marks]

Question 2a

The diagram shows a charged particle entering a region of magnetic field that is directed into the page.

The path of the particle is a quarter circle.

(a)

Justify why the particle is positive.

Page 3 of 11

[2 marks]

Question 2b

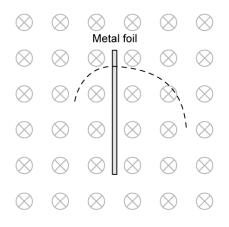
The proton enters the region with a speed of 5.4×10^6 ms⁻¹. The magnetic flux density of the field is 0.35 T.

(b)

Calculate the radius of the protons circular path.

[3 marks]

Question 2c


(c)

Calculate the time the proton spends in the region of the magnetic field.

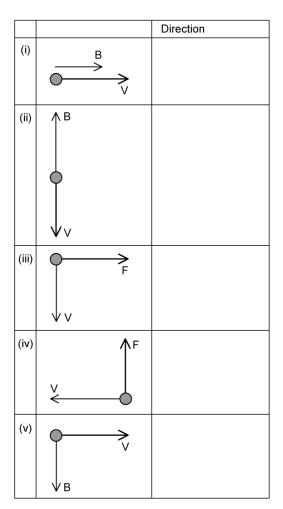
Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2d

The diagram shows the path of a charged particle passing through a thin metallic foil.

(d)

State and explain the direction of motion of the particle and the sign of its charge.

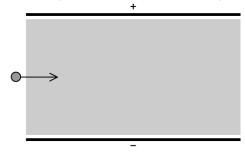


Question 3a

Positive charges are seen passing through different magnetic fields.

(a)

Determine the direction of the missing quantity between B, v and F for each:



[5 marks]

Question 3b

The diagram shows two parallel plates. The electric field between them is directed from top to bottom and has a magnitude 2.6×10^3 N C⁻¹. The shaded region is a region of magnetic field normal to the page.

(b)

Deduce the magnetic field magnitude and direction so that an electron experiences zero net force when travelling through the plates with a speed of 3.0×10^5 ms⁻¹.

[3 marks]

Question 3c

(c)

Suggest and give a reason whether a proton shot with the same speed through the plates experiences zero net force.

Question 3d

The electron's speed is halved.

(d)

Suggest whether the electron would still be undeflected for the same magnetic field found in (b).

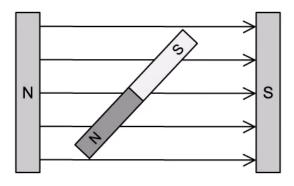
[3 marks]

Question 4a

In the national grid electricity is generated by current carrying wires within a magnetic field.

There are two wires carrying equal currents into the page.

• X


(a) Determine the direction of the magnetic field at point X.

Use a diagram to help you with your answer.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4b

A bar magnet is placed in a uniform magnetic field as shown in the diagram.

(b)

Suggest whether there is a net force on the bar magnet, causing it to move to a different position. Explain your answer.

[2 marks]

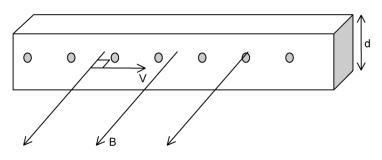
Question 4c

(c)

The bar magnet does move in a specific type of motion. Determine how it will move.

[2 marks]

Question 4d


A taut electrical wire carries electricity between a generator and the step-up transformer. The current is 2000 A and the magnetic field of the Earth at the position of the wire is 4.50×10^{-5} T and makes an angle of 45° below the horizontal.

(d)

Calculate the force experienced by a 25.0 m length of this wire.

Question 5a

A current *I* passes through a conductor. The electrons move with a drift speed *v*. A magnetic field *B* at right angles to the direction of motion of the electrons is also present in the conductor.

(a)

Draw the arrows to indicate the directions of the:

- (i) Conventional current in the conductor
- (ii) Magnetic force on the electron

[2 marks]

Question 5b

A is the cross-sectional area of the conductor, q is the charge of one electron, n is the number of electrons per unit volume and v is the drift speed of the electrons.

(b)

Show that the current on the conductor is given by I = qnAv.

Question 5c

The number density of the electrons is 3.5×10^{28} m⁻³. The current in the wire is 0.30 A and its cross-sectional area is 4.4×10^{-6} m².

(c)

Hence, calculate the drift velocity of the electrons moving in the conductor.

[2 marks]

Question 5d

The magnitude of the magnetic field within this current carrying conductor is 0.30 T.

(d)

Calculate the magnitude of the force on the electrons in the conductor.