

8.2 More About Acids

Question Paper

Course	DP IB Chemistry
Section	8. Acids & Bases
Topic	8.2 More About Acids
Difficulty	Easy

Time allowed: 20

Score: /10

Percentage: /100

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 1

Four 1.0 M solutions of HCl, NH_3 , NaOH and CH_3COOH have been mislabelled, but a student has a pH meter to test the pH of the solutions. Arrange the solutions in order of increasing pH:

- A. $HCI(aq) < NH_3(aq) < NaOH(aq) < CH_3COOH(aq)$
- B. $CH_3COOH(aq) < HCI(aq) < NH_3(aq) < NaOH(aq)$
- $C.HCI(aq) < CH_3COOH(aq) < NH_3(aq) < NaOH(aq)$
- D. $NaOH(aq) < NH_3(aq) < CH_3COOH(aq) < HCI(aq)$

[1 mark]

Question 2

Below are four statements about acid and bases. Which is the correct one?

- A. Strong acids are good proton donors and have weak conjugate bases.
- B. Strong bases are good proton donors and have weak conjugate acids.
- C. Weak acids are poor proton acceptors and have strong conjugate bases.
- D. Strong acids are good proton donors and have strong conjugate bases.

[1 mark]

Question 3

Which statement is correct about the action of weak acids and their conductivity?

- A. Weak acids are proton donors and their solutions are good conductors.
- B. Weak acids are proton donors and their solutions are poor conductors.
- C. Weak acids are proton acceptors and their solutions are good conductors.
- D. Weak acids are proton acceptors and their solutions are good conductors.

 $Head to \underline{savemy exams.co.uk} for more awe some resources \\$

Question 4

Which is the correct expression for the ionic product of water at 25 $^{\circ}\mathrm{C}$ is

$${\sf A.} \; K_{_W} = \frac{[H^+][OH^-]}{[H_2O]}$$

- $B. H_2O(I) = H^+(aq) + OH^-(aq)$
- $C. K_w = [H^+][OH^-]$
- D. 1x 10⁻¹⁴ mol² dm⁻⁶

[1 mark]

Question 5

 $34.3\,\mathrm{cm^3}$ of $0.125\,\mathrm{mol\,dm^{-3}}$ sodium hydroxide solution reacts with $26.0\,\mathrm{cm^3}$ of sulfuric acid. What is the concentration of the acid?

- A. $\frac{34.3 \times 0.125}{26.0}$
- B. $\frac{2 \times 34.3 \times 0.125}{26.0}$
- C. $\frac{34.3 \times 0.125}{2 \times 26.0}$
- D. $\frac{26.0}{2 \times 34.3 \times 0.125}$

[1 mark]

Question 6

90 cm³ of water is added to 10 cm³ of sulfuric acid with a pH of 2. What is the new pH of the acid?

- A.1
- B. 3
- C.5
- D.7

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 7

14/L L C.I	C 11 ' '		
vvnich of th	e tollowing is	s true about	weak acids?

- I. They are poor conductors of electricity
- II. They have a high pH
- III. They react with carbonates to produce carbon dioxide
- A. I and II only
- B. I and III only
- C. II and III only
- $D.\,I,\,II\,and\,III$

[1 mark]

Question 8

Which is true about 1.0 mol dm⁻³ solutions of weak and strong acids?

- A. Magnesium will react with strong acids but not weak acids
- B. Fewer moles of base are needed to neutralise weak acids
- C. Sodium carbonate reacts more slowly with weak acids
- D. Weak acids have a lower pH than strong acids

[1 mark]

Question 9

Four solutions, \mathbf{K} , \mathbf{L} , \mathbf{M} and \mathbf{N} have the following properties

K: pH=8 **L**: $[H^+] = 1 \times 10^{-3} \text{ mol dm}^{-3} \text{ M}$: pH=5 **N**: $[H^+] = 1 \times 10^{-7} \text{ mol dm}^{-3}$

What is their correct order of increasing acidity?

A.K < L < M < N

 $B.\, N < L < M < K$

C.K < N < M < L

 $\mathsf{D}.\, N < M < L < K$

Question 10

Two beakers contain solutions of hydrochloric acid at pH = 2 and pH = 4. How does the concentration of hydrogen ions compare in the two beakers?

- A. Twice as large
- B. Half as much
- C. $\frac{1}{10}$ of the value
- D. $\frac{1}{100}$ of the value