

15.2 Entropy & Spontaneity

Question Paper

Course	DP IB Chemistry
Section	15. Energetics/Thermochemistry (HL only)
Торіс	15.2 Entropy & Spontaneity
Difficulty	Medium

Time allowed:	10
Score:	/5
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Which of the following conditions will mean a reaction is never feasible?

	ΔН	ΔS	Temperature
A	Negative	Positive	High
В	Positive	Negative	High
С	Negative	Negative	Low
D	Positive	Positive	High

[1mark]

Question 2

Ethene is produced according to the following gas-phase synthesis:

 $2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$

Thermodynamic data for the components of this equilibrium are

Change	Value
ΔH ^Θ r / kJ mol ⁻¹	р
ΔS ^Θ /JK ⁻¹ mol ⁻¹	

The free energy change for this reaction at 298 K is:

A.
$$\Delta G^{\Theta} = p - 298 \times q$$

B. $\Delta G^{\Theta} = \frac{p}{p}$

$$298 \times \frac{q}{1000}$$

$$C.\Delta G^{\Theta} = p - 298 \times \frac{q}{1000}$$

$$\mathsf{D}.\,\Delta\mathsf{G}^{\Theta} = \frac{p \times 298}{q}$$

[1mark]

Question 3

Which statements are correct for the following reaction?

$$\Delta H^{\Theta}_{r} = +119 \text{ kJ mol}^{-1}$$

 $\Delta S^{\Theta} = +354.8 \text{ J K}^{-1} \text{ mol}^{-1}$

- I. The reaction will be feasible at high temperatures
- II. The reaction will never be feasible

 $CO(NH_2)_2(aq) + H_2O(I) \rightarrow CO_2(g) + 2NH_3(g)$

- III. The reaction becomes more disordered
- A. I and II only
- B. I and III only
- C. II and III only
- D.I, II and III

[1 mark]

Question 4

Which of the following equations is used when calculating the temperature, in Kelvin, at which a reaction becomes feasible if $\Delta H^{\Theta} = x$ and $\Delta S^{\Theta} = y$.

A. $T = \frac{x}{y}$

 $\mathsf{B}.T\!=\!xy$

 $C \cdot T = x + y$

D. $T = \frac{y}{x}$

[1mark]

Question 5

The $\Delta G^{\Theta}{}_{f}$ values for the following substances are shown.

Substance	ΔG ^θ _f (kJ mol⁻¹)
NH ₃ (g)	-16.4
O ₂ (g)	0
H ₂ O(g)	-228.6
NO (g)	87.6

Which of the following is the correct calculation to determine ΔG^{Θ} ?

 $4NH_3(g) + 5O_2(g) = 6H_2O(g) + 4NO(g)$

A. (-228.6+87.6)+(-16.4)

 $\mathsf{B}.\,(-16.4\,{\tt x}\,4)-[(-228.6\,{\tt x}\,6)+(87.6\,{\tt x}\,4)]$

 $C.[-228.6+(87.6\times4)]-(-16.4\times4)$

D. $[(-228.6 \times 6) + (87.6 \times 4)] - (-16.4 \times 4)$

[1 mark]

Page 4 of 4