

17.1 The Equilibrium Law

Question Paper

Course	DP IB Chemistry
Section	17. Equilibrium (HL only)
Topic	17.1 The Equilibrium Law
Difficulty	Medium

Time allowed: 10

Score: /5

Percentage: /100

Question 1

When gaseous dinitrogen pentoxide, $N_2O_5(g)$, decomposes at 358 K, the following equilibrium is established:

$$2N_2O_5(g) = 4NO_2(g) + O_2(g)$$

2.0 mol of $N_2O_5(g)$ were placed in a 1.0 dm³ container and allowed to reach equilibrium. At equilibrium 1.0 mol of $N_2O_5(g)$ were present. What is the value of K_c ?

- A. 0.125
- B.1
- C.2
- D. 8

[1 mark]

Question 2

Consider the following reversible reaction:

$$3O_2(g) = 2O_3(g)$$

What is the value of K_c when the equilibrium concentrations are $[O_2] = 4.0 \text{ mol dm}^{-3}$ and $[O_3] = 4.0 \text{ mol dm}^{-3}$?

- A. 0.25
- B. 4
- C.16
- D. 64

[1 mark]

Question 3

Which if the following will shift the position of equilibrium to the right in the reaction shown?

$$2N_2O_5(g) = 4NO_2(g) + O_2(g)$$
 $\Delta H = +219.2 \text{ kJ}$

- I. Decreasing the concentration of NO₂(g)
- II. Decreasing the temperature
- III. Decreasing the pressure
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 4

Hydrogen iodide decomposes to form hydrogen and iodine vapour.

$$2HI(g) = H_2(g) + I_2(g)$$

What is the effect of decreasing the volume of the equilibrium mixture at constant temperature?

- A. The amount of $H_2(g)$ remains the same but its concentration decreases
- B. The forward reaction is favoured
- C. The backward reaction is favoured
- D. The value of K_c remains unchanged

[1 mark]

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 5

 $A\,mixture\,of\,0.40\,mol\,of\,SO_2(g)\,and\,0.40\,mol\,of\,O_2(g)\,was\,placed\,in\,a\,1\,dm^3\,container.\,The\,following\,equilibrium\,took\,place:$

$$2SO_2(g) + O_2(g) = 2SO_3(g)$$

 $At equilibrium the \ mixture \ contained \ 0.25 \ mol \ of \ O_2(g) \ . How \ many \ moles \ of \ SO_2(g) \ and \ SO_3(g) \ were \ present \ at \ equilibrium?$

	SO ₂ (g)/mol	SO ₃ (g) / mol
Α	0.25	0.15
В	0.30	0.15
С	0.10	0.30
D	0.25	0.30

[1 mark]