

5.3 Integration

Question Paper

Course	DP IB Maths
Section	5. Calculus
Торіс	5.3 Integration
Difficulty	Medium

Time allowed:	60
Score:	/46
Percentage:	/100

Question la

(a) Show that

$$(3-2x)^2 = 9 - 12x + 4x^2$$

[2 marks]

Question 1b

(b) Hence, or otherwise, find the indefinite integral for the following:

$$\int (3-2x)^2 \, \mathrm{d}x$$

[2 marks]

Question 2

Given

$$\int_{k}^{5} (2x - 1) \, \mathrm{d}x = 20$$

find the value of the positive constant k.

[4 marks]

Question 3a

A curve y = f(x) passes through point A(4, 2) and has a gradient of f'(x) = 5x - 2.

(a) Find the gradient of the curve at point A.

[2 marks]

Question 3b

(b) Find the equation of the tangent to the curve at point A. Give your answer in the form y = mx + c.

[2 marks]

Question 3c

(c) Determine the equation of the curve y = f(x).

[3 marks]

Question 4a

A point P(3,8) lies on the curve y = f(x) that has a gradient of $f'(x) = -2x^2 + 11$.

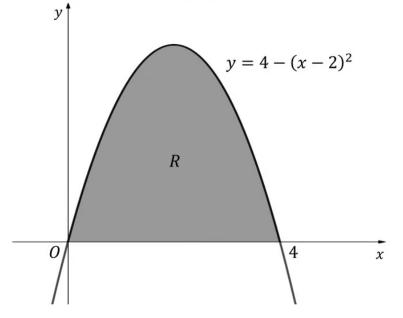
(a) Find the gradient of the curve at point P.

[2 marks]

Question 4b

(b) Find the equation of the tangent to the curve at point P. Give your answer in the form y = mx + c.

[2 marks]


Question 4c

(c) Determine the equation of the curve y = f(x).

[3 marks]

Question 5a

The diagram below shows part of the graph of $y = 4 - (x - 2)^2$.

(a) Write down the values of x where y = 0.

[1 mark]

Question 5b

(b) Show that

$$4 - (x - 2)^2 = 4x - x^2$$

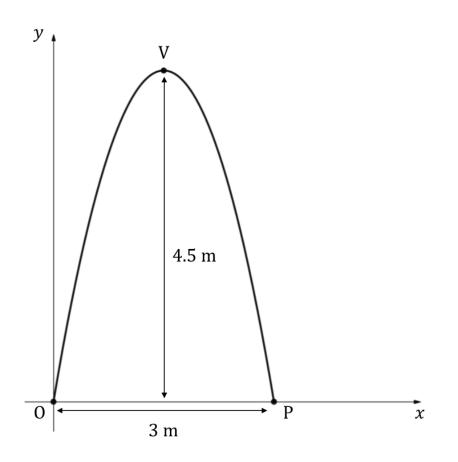
[1mark]

Question 5c

(c) Evaluate

$$\int_0^4 (4x - x^2) \, \mathrm{d}x$$

[2 marks]


Question 5d

(d) Write down the area of the region labelled *R*.

[1 mark]

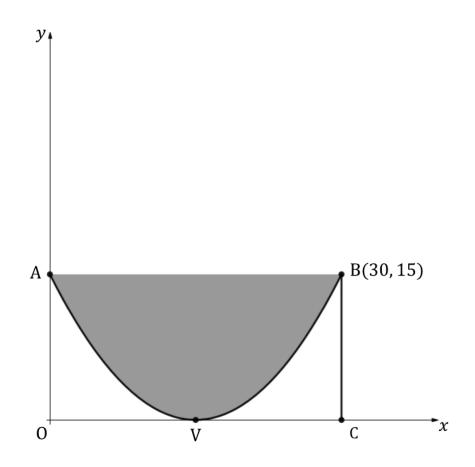
Question 6a

The following diagram shows an arch that is 4.5 m tall and 3 m wide. The arch crosses the *x*-axis at the origin, O, and at point P, and its vertex is at point V. The arch may be represented by a curve with an equation of the form y = x(ax + 6), where all units are measured in metres.

(a) Find

- (i) the coordinates of P
- (ii) the coordinates of V
- (iii) the value of a.

[4 marks]



Question 6b

(b) Find the cross-sectional area under the arch.

Question 7a

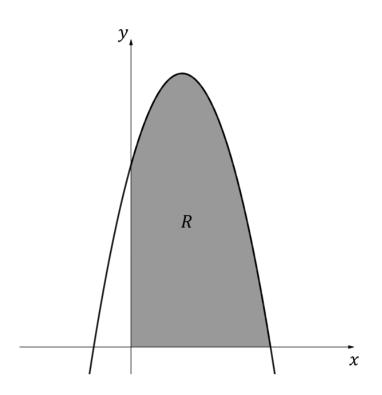
A trough has a cross-sectional area shown by the shaded region of the diagram below, where the x and y values are in centimetres. The curved bottom of the trough has an equation in the form $y = r(x - 15)^2$. Point O is the origin, and points O, A, B and C are the vertices of a rectangle. Point V, the deepest point of the trough, is situated on the x-axis.

(a) Determine the value of *r*.

Question 7b

(b) Find the cross-sectional area of the trough.

[4 marks]


Question 7c

The length of the trough is 1.2 m.

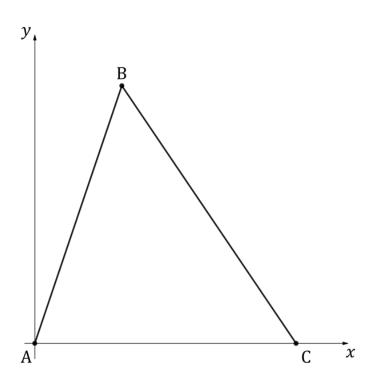
(c) Find the volume of the trough. Give your answer in cm^3 .

Question 8a

The following diagram shows part of the graph of f(x) = (5 - 2x)(2 + 3x), $x \in \mathbb{R}$. The shaded region *R* is bounded by the *x*-axis, the *y*-axis and the graph of *f*.

(a) Write down an integral for the area of region *R*.

[2 marks]


Question 8b

(b) Find the area of region *R*.

[1 mark]

Question 8c

The three points A(0,0), B(4,h) and C(9,0) define the vertices of a triangle.

(c) Find the value of *h*, the *y*-coordinate of B, given that the area of the triangle is equal to the area of region *R*.