

1.2 Reacting Masses & Volumes

Question Paper

Course	DP IB Chemistry
Section	1. Stoichiometric Relationships
Торіс	1.2 Reacting Masses & Volumes
Difficulty	Easy

Time allowed:	20
Score:	/10
Percentage:	/100

Question 1

When calcium carbonate is heated it decomposes according to the following equation

 $CaCO_{_3}(s) \ \rightarrow CaO(s) \ \text{+}CO_{_2}(g)$

If 6.00g of calcium carbonate is heated and produces 2.73g of calcium oxide, what is the percentage yield of calcium oxide? (M_r CaCO₃ = 100; CaO = 56)

A $\frac{56 \times 6.00 \times 100}{2.73}$ B $\frac{2.73 \times 100 \times 100}{56 \times 6.00}$ C $\frac{56 \times 6.00 \times 100}{2.73 \times 100}$ D $\frac{2.73 \times 100}{56 \times 6.00}$

Question 2

Hydrogen and chlorine react according to the following equation

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

When 1.5 moles of chlorine reacts with 2.0 moles of hydrogen, what will be the result?

- A 3.5 mol of HCl
- **B** 1.5 mol of HCl and 0.5 mol of H₂
- C 2.0 mol of HCl and 0.5 mol of Cl₂
- **D** 3.0 mol of HCl and 0.5 mol of H₂

Question 3

25.0 cm³ of hydrochloric acid solutions reacts with 36.2 cm³ of 0.225 mol dm⁻³ sodium hydroxide solution. The concentration of the acid is

Α	$\frac{36.2 \times 0.225}{25.0}$
в	$\frac{25.0 \times 0.225}{36.2}$
с	$\frac{25.0 \times 0.225}{1000 \times 36.2}$
D	$\frac{36.2 \times 0.225}{1000 \times 25.0}$

[1 mark]

Question 4

Which amount of the following substances contains the smallest quantity of ions?

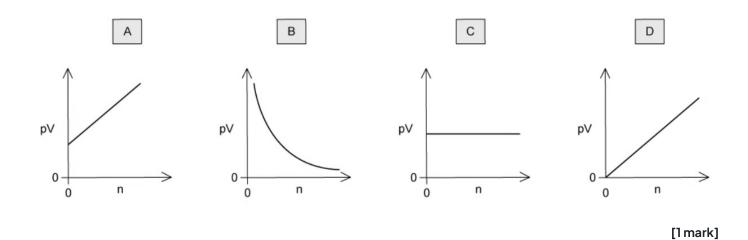
- A 2 mol of KOH
- **B** 1 mol of NH₄Br
- C 2 mol of MgCl₂
- **D** 1 mol of Fe_2O_3

Question 5

A solution of sodium chloride is made by adding 300 cm³ of water to a flask containing 200 cm³ of 0.5 mol dm⁻³ sodium chloride. What is the concentration of the resulting solution?

- A 0.05 mol dm⁻³
- **B** 0.1 mol dm⁻³
- **C** 0.2 mol dm⁻³
- **D** 0.3 mol dm⁻³

[1 mark]


Question 6

What is the number of molecules in 500 cm³ of oxygen under standard conditions?

Α	6.02 x 10 ²³ x 0.5
в	6.02 x 10 ²³ x 500
С	$\frac{22.7}{0.5}$ x 6.02 x 10 ²³
D	$\frac{0.5}{22.7}$ x 6.02 x 10 ²³

Question 7

For an ideal gas at constant pressure and temperature, which diagram shows the correct graph of pV against n?

Question 8

The M_r value of a gas can be calculated from the ideal gas equation.

Which expression will give the value of M_r for a sample of a gas of mass *m* in grams?

A
$$M_r = \frac{mRT}{pV}$$
 B $M_r = \frac{pVRT}{m}$ **C** $M_r = \frac{mpV}{RT}$ **D** $M_r = \frac{pV}{mRT}$

Question 9

Which of the following least resembles an ideal gas at room temperature?

- A helium
- B ammonia
- **C** carbon dioxide
- D hydrogen

[1 mark]

Question 10

The ideal gas equation below summarises the gas laws.

$$pV = nRT$$

Which statement below is correct?

- A there exist intermolecular forces of attraction between gas molecules
- **B** ideal gas molecules will collide inelastically upon impact with each other
- **C** one mole of an ideal gas occupies the same volume under the same conditions of temperature and pressure
- D the volume of a given mass of an ideal gas is doubled if its temperature is raised from 25 $^{\rm o}{\rm C}$ to 50 $^{\rm o}{\rm C}$