

5.11 MacLaurin Series

Question Paper

Course	DP IB Maths
Section	5. Calculus
Торіс	5.11 MacLaurin Series
Difficulty	Hard

Time allowed:	120
Score:	/94
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

Consider the general Maclaurin series formula

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + \dots$$

(where $f^{(n)}$ indicates the n^{th} derivative of f).

(a)

Explain why the formula cannot be used to calculate a Maclaurin expansion for $\ln x$.

[2 marks]

Question 1b

(b)

Use the formula to find the first five non-zero terms of the Maclaurin series for $\ln(1 + x)$.

[4 marks]

Question lc

(c) Hence approximate the value of ln 2. (i) by substituting the value x = 1(ii) by substituting the value $x = -\frac{1}{2}$.

[4 marks]

Question 1d

(d)
(i)
Compare the approximations found in part (c) to the exact value of ln 2.
(ii)
Explain briefly the reason for the difference in accuracy between the two approximations.

[4 marks]

Question le

(e)

Use the general Maclaurin series formula to show that the general term of the Maclaurin series for $\ln(1 + x)$ is

$$\frac{(-1)^{n+1}x^n}{n}, \qquad n \ge 1$$

[3 marks]

Question 2a

(a)

Find the first four non-zero terms of the Maclaurin series for $\cos 4x$ in ascending powers of x.

[3 marks]

Question 2b

(b)

Hence approximate the value of $\cos 3$ and compare this approximation to the exact value.

[3 marks]

Question 2c

(c) Explain how the accuracy of the Maclaurin series approximation in part (b) could be improved.

[1mark]

Question 3a

(a) Find the Maclaurin series for $e^{2x}\ln(1+x)$ in ascending powers of x, up to and including the term in x^4 .

[5 marks]

Question 3b

(b)

Hence find the first four terms of the Maclaurin series for $e^{2x}\left(2\ln(1+x) + \frac{1}{1+x}\right)$ in ascending powers of x.

[3 marks]

Question 4a

(a)

Use the general Maclaurin series formula to find the first four terms of the Maclaurin series for $\frac{1}{2+3x}$ in ascending powers of x.

[4 marks]

Question 4b

(b)

Confirm that the answer to part (a) matches the first four terms of the binomial theorem expansion of $\frac{1}{2+3x}$.

[3 marks]

Question 4c

(c)

Find the Maclaurin series for $\ln(2+3x)$ in ascending powers of x, up to and including the term in x^4 .

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4d

(d) Find the derivative of $\ln(2+3x)$, and confirm that the series found in parts (a) and (c) reflect the relationship between $\ln(2+3x)$ and $\frac{1}{2+3x}$ that is thereby implied.

[3 marks]

Question 5a

(a)

(i)

Write down the first five non-zero terms of the Maclaurin series for arctan x in ascending powers of x.

(ii)

Hence find an approximation for the value of the integral

$\int_0^1 \arctan x \, \mathrm{d}x$

[3 marks]

Question 5b

(b) Use integration by parts to show that

$$\int \arctan x \, \mathrm{d}x = x \arctan x - \frac{1}{2}\ln(1+x^2) + c$$

[4 marks]

Page 7 of 12

Question 5c

(c)

Hence determine the exact value of $\int_0^1 \arctan x \, dx$, and compare it to the approximation found in part (a)(ii).

[3 marks]

Question 6a

(a) Use the binomial theorem to find a Maclaurin series for the function $f\,{\rm defined}\,{\rm by}$

$$f(x) = \sqrt{4 - 9x^2}$$

Give the series in ascending powers of x up to and including the term in x^6 .

[4 marks]

Question 6b

(b) State any limitations on the validity of the series expansion found in part (a).

[2 marks]

Question 6c

(c)

Use the answer to part (a) to estimate the value of $\sqrt{3.91}$, and compare the accuracy of that estimated value to the actual value of $\sqrt{3.91}$.

[4 marks]

Question 7a

Consider the differential equation

$$y' = x^2 - 3y^2$$

together with the initial condition y(0) = 1.

(a)

Find expressions for y'', y''', $y^{(4)}$ and $y^{(5)}$. Each should be given in terms of x and y and of lower-order derivatives of y.

[4 marks]

Page 9 of 12

Question 7b

Let f(x) be the solution to the differential equation above with the given boundary condition, so that y = f(x).

(b)

Find the first six terms in ascending powers of x of the Maclaurin series for f(x).

[7 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 7c

(c) Hence approximate the value of y when x = 0.1.

[2 marks]

Question 8a

Consider the differential equation

y' = -2xy

with the initial condition y(0) = 2.

a)

By first finding expressions for y'', y''', $y^{(4)}$, $y^{(5)}$ and $y^{(6)}$ in terms of x, y and lower-order derivatives of y, find a Maclaurin series for the solution to the differential equation with the given boundary condition, in ascending powers of x up to and including the term in x^6 .

[9 marks]

Page 11 of 12

Question 8b

(b)

Solve the differential equation with the given boundary condition analytically to find an exact solution in the form y = f(x).

[4 marks]

Question 8c

(c)

Find the first four non-zero terms of the Maclaurin series for the answer to part (b), and confirm that they match those in the answer to part (a).

[3 marks]