

3.7 Inverse & Reciprocal Trig Functions

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.7 Inverse & Reciprocal Trig Functions
Difficulty	Medium

Time allowed:	80
Score:	/64
Percentage:	/100

Question la

(a) State the value of $\arctan(\sqrt{3})$.

[1 mark]

Question 1b

(b) If $\arccos x = \frac{\pi}{6}$ find (i) the exact value of $\arcsin x$.

(ii)

the exact value of $\sec(\arccos x)$.

[6 marks]

Question 2

Find the exact values of the following expressions:

(i)

 $\operatorname{cosec}\left(\frac{\pi}{3}\right) + \tan\left(\frac{\pi}{6}\right)$

(ii) $3\sin\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{3}\right)$

[6 marks]

Question 3a

a) Sketch the graph of $y = \cot x$ for $-\pi \le x \le \pi$.

[2 marks]

Question 3b

b) Given that $\cot \theta = \frac{9}{7}$ and $\pi \le \theta \le \frac{3\pi}{2}$, find the values of $\cos \theta$, $\sin \theta$ and $\tan \theta$.

[5 marks]

Question 4

Solve $\tan^2 x = \sec x + 11$ for $0 \le x \le \pi$.

[5 marks]

Question 5a

a) Show that the equation

 $\sec \theta - 5 \cos \theta = 2\sqrt{2}$

can be rewritten as

$$5\cos^2\theta + 2\sqrt{2}\cos\theta - 1 = 0$$

[3 marks]

Question 5b

b)

Hence, solve the equation sec $\theta - 5 \cos \theta = 2\sqrt{2}$ for all values of θ in the interval $-\pi \le \theta \le \frac{\pi}{2}$.

[3 marks]

Question 6a

A function f can be defined by $f(x) = 3x - 5x \arcsin(x)$, where $-1 \le x \le 1$.

a)

Sketch the graph of f indicating clearly any intercepts with the coordinate axes and the coordinates of any local maximum or minimum points.

Question 6b

b) State the domain and range of f.

[2 marks]

Question 6c

c) Solve the inequality $3x - 5x \arcsin(x) > -2$.

[3 marks]

Question 7a

The function f is defined as $f(x) = \arccos x$, $-1 \le x \le 1$, and the function g is such that g(x) = f(3x).

a)

Sketch the graph of y = f(x) and state the range of f.

Question 7b

b) Sketch the graph of y = g(x) and state the domain of g.

Question 7c

C) Find the inverse function $g^{-1}(x)$ and state its domain.

Question 8a

a) Show that sec $\theta \cot \theta \equiv \operatorname{cosec} \theta$.

[2 marks]

Question 8b

b) Hence solve in the range $0 \le \theta \le 2\pi$, the equation sec $\theta \cot \theta = -2$

Page 7 of 9

[3 marks]

[2 marks]

[3 marks]

Question 9a

a) Show that the equation

 $\tan^2 x = 6 \sec x - 10$

can be rewritten in the form

 $(\sec x - 3)^2 = 0$

[3 marks]

Question 9b

b) Hence, solve the equation $\tan^2 x = 6 \sec x - 10$ in the range $0 \le x \le 2\pi$.

Question 10a

a) Show that the equation

 $\cot^2 x = 9 - 3 \csc x$

can be rewritten in the form

 $(\operatorname{cosec} x - 2)(\operatorname{cosec} x + 5) = 0.$

[3 marks]

Question 10b

b) Hence, solve the equation $\cot^2 x = 9 - 3 \operatorname{cosec} x$ in the interval $-180^\circ \le x \le 180^\circ$. Give your answers correct to 1 decimal place.