

14.2 Further Aspects of Bonding

Question Paper

Course	DP IB Chemistry	
Section	14. Chemical Bonding & Structure (HL only)	
Topic	14.2 Further Aspects of Bonding	
Difficulty	Medium	

Time allowed: 70

Score: /54

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question la

a)

 $Harmful\,UV\,radiation\,from\,the\,Sun\,is\,absorbed\,by\,the\,ozone\,layer.$

Explain how the bonding in O_2 and O_3 affects the wavelengths of UV light they absorb

[3 marks]

Question 1b

b)

The chemical balance of the stratosphere is disrupted by the presence of chlorofluorocarbons (CFCs) and other ozone-depleting compounds.

Describe, using equations, how CFCs contribute to ozone depletion using dichlorodifluoromethane and explain the initial step by reference to the bonds in the CFC.

[4 marks]

Question 1c

c)

Although the use of harmful CFCs is being phased out, suggest why these compounds are expected to remain in the atmosphere for the next 80-100 years.

[2 marks]

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 1d	
-------------	--

d)

Formulate two equations to show how nitrogen(II) oxide, NO, catalyses the destruction of ozone.

[2 marks]

Question 2a

a)

 $Cyclohexane\ C_6H_{12}\ has\ a\ puckered, non-planar\ shape\ whereas\ benzene\ C_6H_6\ is\ planar.$

Explain this difference by making reference to the C-C-C bond angles and the type of hybridisation of carbon in each molecule.

[4 marks]

Question 2b

b)

Urea, $CO(NH_2)_2$, is present in solution in animal urine.

What is the hybridisation of C and N in the molecule, and what are the approximate bond angles?

[4 marks]

Question 2c

c)

Describe the hybridisation of the carbon atom in methane and explain how the concept of hybridisation can be used to explain the shape of the methane molecule

[4 marks]

Question 2d

d)

A molecule of ethanol is shown below.

Deduce the hybridisation of the carbon atom marked in the diagram below.

[1 mark]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 3a

a)

Carbonation is the process of increasing the concentration of carbonate ions in water to produce carbonated drinks.

Identify the hybridisation of the central carbon atom.

[1 mark]

Question 3b

b)

Explain, with the use of diagrams, how there are three valid structures for the carbonate ion.

[3 marks]

Question 3c

C)

Describe the distribution of pi (π) electrons and explain how this can account for the structure and stability of the carbonate ion, CO₃²⁻.

[3 marks]

Question 3d

d)

Identify and explain the bond order of the carbonate ion.

[2 marks]

Question 4a

a)

Explain how the concept of hybridisation can be used to explain the triple bond present in propyne.

[3 marks]

Question 4b

b)

Consider the molecule below which contains both sigma and pi bonds.

How many carbon atoms exhibit sp² hybridisation in this molecule.

[1 mark]

Question 4c

C)

The concentration of ozone in the upper atmosphere is maintained by the following three reactions, I, II and III

$$I \quad O_2 \qquad \xrightarrow{hv} \quad 2O_1$$

$$\qquad \qquad \mathsf{II} \quad \mathsf{O_2} + \mathsf{O} \bullet \longrightarrow \mathsf{O_3}$$

III
$$O_3$$
 $\xrightarrow{hv} O_2 + O_2$

Explain which reaction requires the most energy

[4 marks]

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 4d

۹۱

Deduce the hybridisation shown by the nitrogen atoms in NF_4^+ , N_2H_2 and N_2H_4 .

	NF ₄ ⁺	N_2H_2	N ₂ H ₄
Hybridisation			

[3 marks]

Question 5a

a)

Sea spray is generated by the breaking of waves and releases bromine into the atmosphere.

 $Write two \ balanced \ equations \ to \ show \ how \ a \ bromine \ radical \ could \ cause \ the \ destruction \ of \ ozone.$

[2 marks]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 5b

b)

Explain why ozone can be dissociated by light with a longer wavelength than required to decompose oxygen.

[3 marks]

Question 5c

c)

The two oxygen-oxygen bonds in ozone are in fact of equal length. Deduce why this is the case and how the length of these would compare to oxygen-oxygen bond lengths in hydrogen peroxide, H_2O_2 , and in the oxygen molecule, O_2

[2 marks]

Question 5d

d)

One CFC, Freon-13 (chlorotrifluoromethane), which can be used as a refrigerant, has been phased out by the Montreal Protocol.

Describe, using equations, the mechanism of the catalysis of ozone depletion by this particular CFC.

[3 marks]