

3.6 Trigonometric Equations & Identities

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.6 Trigonometric Equations & Identities
Difficulty	Very Hard

Time allowed:	80
Score:	/66
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question la

The value of
$$\tan 2\alpha = \frac{2}{5}$$
 for $\frac{\pi}{2} \le 2\alpha \le \frac{3\pi}{2}$.

(a) Find

- (i) $\sin 2\alpha$
- (ii) $\cos 2\alpha$

[3 marks]

Question 1b

(b) Hence show that

$$\sin \alpha = \sqrt{\frac{k + 5\sqrt{k}}{2k}}$$
 and $\cos \alpha = -\sqrt{\frac{k - 5\sqrt{k}}{2k}}$

where k is a positive integer to be determined, and use those results to find the exact value of $\tan \alpha$.

[6 marks]

Question 2

The value of $\sin B = x$, for $\frac{\pi}{2} < B < \pi$.

Find the following in terms of *x*:

- (i) sin 2*B*
- (ii) cos 2*B*
- (iii) tan 2B.

[7 marks]

Page 3 of 11

Question 3a

It is given that $\cos 6x = p$.

(a) Show that

$$\tan 3x = \pm \sqrt{\frac{1-p}{1+p}}$$

[5 marks]

Question 3b

(b) For $0 < x < \frac{\pi}{3}$, determine the range of *x* values for which

- (i) the 'plus' version of the part (a) result should be used
- (ii) the 'minus' version of the part (a) result should be used
- (iii) the value of $\tan 3x$ is not defined.

Page 4 of 11

[3 marks]

Question 4

Solve the equation

$$\sin 2\theta - \sin \theta + \sqrt{3}\cos \theta = \frac{\sqrt{3}}{2}$$

in the interval $0 \le \theta \le 360^{\circ}$.

[7 marks]

Question 5

Solve the equation

 $\sin 2x \tan 2x = \frac{1}{2\cos 2x}$

in the interval $-90^{\circ} \le x \le 90^{\circ}$.

[5 marks]

Question 6

Solve the equation

$$\frac{5\sin^2 x - 2}{\cos x} = 3 - \cos x$$

in the interval $-\pi \le x \le 2\pi$.

[6 marks]

Question 7a

(a) Use the fact that

$$3p^{3} - (7 - 3\sqrt{3})p^{2} - (20 + 7\sqrt{3})p - 20\sqrt{3} = (3p + 5)(p^{2} + (\sqrt{3} - 4)p - 4\sqrt{3})$$

to fully factorise $3p^3 - (7 - 3\sqrt{3})p^2 - (20 + 7\sqrt{3})p - 20\sqrt{3}$.

[2 marks]

Question 7b

Two functions, f and g, are defined by

$$f(x) = 3 \tan^3 3x - (20 + 7\sqrt{3}) \tan 3x$$
 and $g(x) = (7 - 3\sqrt{3}) \tan^2 3x + 20\sqrt{3}$

for $-\frac{\pi}{6} \le x \le \frac{\pi}{3}$.

(b) Use an algebraic method along with your result from part (a) to determine the *x*-coordinates of the points of intersection of the curves y = f(x) and y = g(x).

Your solution should show clear algebraic working, and your answers should be given as exact values where possible.

[8 marks]

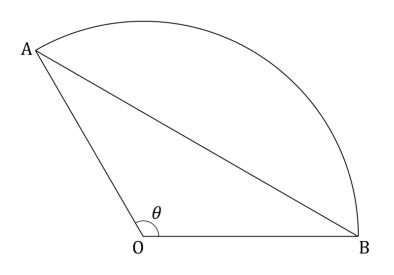
Question 8a

Let OAB be an isosceles triangle with OA = OB and $A\widehat{OB} = \theta$.

(a) If the length of line segment AB is denoted by *p*, and the area of triangle OAB is denoted by *q*, show that

$$\cos\theta = \frac{1-m}{1+m}$$

where


$$m = \frac{p^4}{16q^2}$$

[9 marks]

Page 9 of 11

Question 8b

The diagram below shows circle sector OAB with centre O and angle at the centre $A\widehat{O}B = \theta$.

(b) Given that the length of chord AB is $2\sqrt{3}$ units, and that the area of triangle OAB is $\sqrt{3}$ units², find the area of sector OAB and the length of arc AB.

[5 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 11 of 11