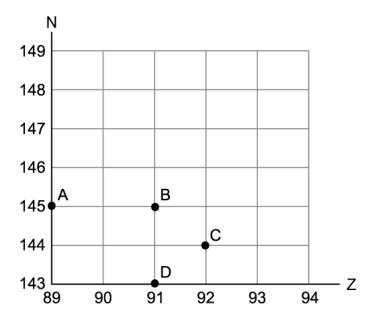


7.1 Discrete Energy & Radioactivity

Question Paper

Course	DP IB Physics
Section	7. Atomic, Nuclear & Particle Physics
Торіс	7.1 Discrete Energy & Radioactivity
Difficulty	Medium

Time allowed:	20
Score:	/10
Percentage:	/100



Question 1

 $\frac{238}{92}U$ decays to thorium-234 by emitting an alpha particle and two gamma rays. Thorium-234 then decays into protactinium via beta decays

via beta decay.

Which point on the N-Z graph below represents the position of the granddaughter nucleus, protactinium?

[1mark]

Question 2

The half-life of carbon-14 is 6000 years.

An ancient elephant tusk has been uncovered and its age is unknown. A 20 g sample of the tusk has an activity of 1.25 Bq due to carbon-14.

A 80 g sample of tusk taken from a living elephant has an activity of 20 Bq.

Use this information to determine the age of the ancient tusk.

A. 3000 years

B. 12 000 years

- C.18000 years
- D. 24 000 years

Question 3

Fluorodeoxyglucose is a compound used as a tracer in medical imaging. The isotope fluorine-18 is used, which is a positron emitter.

The way these positrons interact with electrons in the body allows PET (positron emission tomography) scanners to determine the rate of respiration certain cells are performing.

Fluorine-18 decays into an isotope of oxygen.

Which equation below represents the correct nuclear equation for this decay?

A.
$${}^{18}_{9}F \rightarrow {}^{18}_{8}O + {}^{0}_{+1}\beta + v_e$$

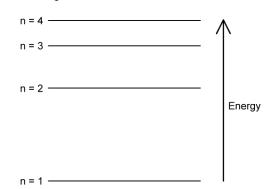
B. ${}^{18}_{9}F \rightarrow {}^{18}_{8}O + {}^{0}_{-1}\beta + \overline{v_e}$
C. ${}^{18}_{9}F \rightarrow {}^{18}_{9}O + {}^{0}_{+1}\beta + v_e$
D. ${}^{18}_{9}F \rightarrow {}^{18}_{8}O + {}^{0}_{+1}\beta + \overline{v_e}$

[1mark]

Question 4

 $\label{eq:protactinium-231} Pa) is a radioactive element, it decays by alpha radiation and then beta-minus decay as shown below:$

$${}^{231}_{91}Pa \rightarrow A + \alpha \rightarrow B + \beta^- + \overline{v_e}$$


What proton number and mass number will element **B** have?

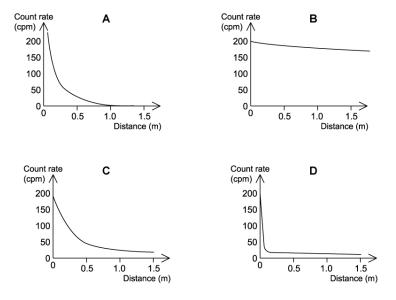
	Proton Number	Mass Number
Α.	89	229
В.	90	229
C.	89	227
D.	90	227

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5

The energy levels of an atom are shown in the diagram below.

Which transition will emit the photon with the shortest wavelength?


A. n = 4 to n = 1 B. n = 2 to n = 1 C. n = 2 to n = 1 D. n = 4 to n = 3

[1mark]

Question 6

A radioactive source is known to emit β radiation. A Geiger-Muller tube is used to measure the count rate at increasing distances from the source.

Wh_ich graph correctly represents the variation in count rate over these distances for β radiation?

© 2015-2023 Save My Exams, Ltd. • Revision Notes, Topic Questions, Past Papers

[1 mark]

Question 7

Unstable nuclei make up 10% of a sample's mass. The count rate of the sample is measured over a time period of 8 hours.

After some time has passed, the percentage of the sample which is unstable reduces to 2.5%. What is the count rate of the source at this time?

- A. 90 cpm
- B. 60 cpm
- C. 45 cpm
- D.30 cpm

Question 8

A source is known to be radioactive but the type of radiation being emitted is unknown.

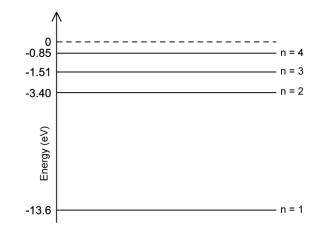
A Geiger-Müller tube is placed close to the source and different materials are placed between the two. A table of the count rates recorded for each material is shown below. The background count rate is 15 counts per minute.

Material	Count rate recorded / counts per minute
Paper	528
Nothing	1064
Thick lead	17
Aluminium	524

What types of radiation are being emitted by the source?

A. α , β and γ

B. α only


C. β and γ

D. α and γ

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 9

Hydrogen atoms feature energy levels as shown below.

Which photon energy will **not** cause an electron to be excited or ionised in a ground state hydrogen atom?

A.10.2 eV

B.12.29 eV

C.12.75 eV

D.15.0 eV

[1mark]

Question 10

Three of the four isotopes below are the same element. Which isotope represents a different element?

	Nucleon number	Neutron number
Α.	233	141
В.	235	143
C.	238	146
D.	239	146