

16.1 Rate Expression & Reaction Mechanism

Question Paper

Course	DP IB Chemistry	
Section	16. Chemical Kinetics (HL only)	
Торіс	16.1 Rate Expression & Reaction Mechanism	
Difficulty	Easy	

Time allowed:	50
Score:	/37
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

a)

Outline two ways a rate of a reaction can be expressed and state the units for rate of reaction.

[2]

[2 marks]

Question 1b

b)

Explain what is meant by the order of a reaction and how it may be determined.

[2]

[2 marks]

Question lc

c)

Carbon monoxide and chlorine react together to make phosgene, $COCl_2$. The equation for the reaction is given below:

A possible rate equation for the reaction is:

rate = $k[CO(g)]^{2}[Cl_{2}(g)]^{\frac{1}{2}}$

 $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

What is the overall reaction order?

[1]

[1 mark]

Question 1d

d)

Determine the units of the rate constant, k, for the following rate equation:

rate = $k[NO]^2[O_2]$

[1]

Question 2a

a)

The rate of hydrolysis of sucrose under acidic conditions can be determined experimentally. The following data was obtained:

Experiment	Initial [HCI] / mol dm ⁻³	Initial [sucrose] / mol dm ⁻³	Rate of reaction / mol dm ⁻³ s ⁻¹
1	0.10	0.10	0.024
2	0.10	0.15	0.036
3	0.20	0.10	0.048

Determine the order of reaction with respect to HCl.

[1]

[1mark]

Question 2b

b) Determine the order of reaction with respect to sucrose.

[1mark]

[1]

Question 2c

c)

Determine the overall order of reaction, write the rate expression and state the units of the rate constant, k.

[3]

[3 marks]

Question 2d

d)

Determine the following:

i)

The value of k, using Experiment 1

ii) The rate of reaction if the concentration of HCl and sucrose are both 0.20 mol $\rm dm^{-3}$ [1]

[1]

[2 marks]

[2]

[2 marks]

Question 3a a)

Sketch graphs of a first order and second order reaction of concentration against time.

Question 3b

b)

Draw sketch graphs for a first and second order reaction of rate against concentration.

[2]

[2 marks]

Page 4 of 8

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3c

c)

Deduce the units of the rate constant, k, for a first order reaction.

[1]

[1mark]

Question 3d

d)

State, with a reason, how the value of the rate constant, *k*, varies with increased temperature for a reaction.

[4]

[4 marks]

Question 4a

a)

State what is meant by the terms rate determining step and molecularity in a chemical reaction.

[2]

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4b

b)

The following reaction mechanism has been proposed for the formation of nitrosyl bromide, NOBr, from nitrogen monoxide and bromine:

Step 1: NO + NO \rightarrow N₂O₂ Step 2: N₂O₂ + Br₂ \rightarrow 2NOBr

Deduce the overall reaction equation and comment on the molecularity of Step 1 and 2.

[2]

[2 marks]

Question 4c

c)

A student proposes an alternative one step mechanism for the formation of nitrosyl bromide.

$$NO + NO + Br_2 \rightarrow NOBr_2$$

Explain why this mechanism is not likely to take place.

[2]

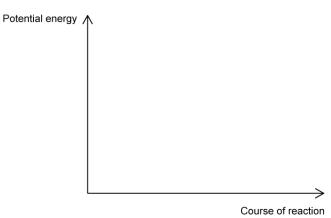
[2 marks]

Question 4d

d)

State the role of N_2O_2 in the mechanism in part b).

[1]


[1 mark]

Question 5a

a)

Draw a labelled diagram, on the follow grid, showing a potential energy profile in a two step reaction. The second step is the slow step of the reaction.

[3]

[3 marks]

Question 5b

b)

State which step of the mechanism in a) is affected by the addition of a catalyst.

[1]

[2]

[1 mark]

Question 5c

c) A reaction mechanism is shown below.

> Step 1: $NO_2 + NO_2 \rightarrow NO + NO_3$ (slow) Step 2: $NO_3 + CO \rightarrow NO_2 + CO_2$ (fast)

Deduce the overall reaction equation and the rate equation for the reaction.

[2 marks]

Question 5d

d)

State the overall reaction order in part c) and state the units of the rate constant.

[2]

[2 marks]