

4.7 Further Probability Distributions

Question Paper

Course	DP IB Maths
Section	4. Statistics & Probability
Торіс	4.7 Further Probability Distributions
Difficulty	Hard

Time allowed:	90
Score:	/71
Percentage:	/100

SaveMyExams Headto savemy exams.co.uk for more a we some resources

Question la

A continuous random variable X has the probability density function given by

$$f(x) = \begin{cases} k \sin 2x, & 0 \le x \le \frac{\pi}{3} \\ 0, & \text{otherwise} \end{cases}$$

(a) Find the value of k.

Question lb

(b) Giving your answers to three significant figures, find (i) the mean of X, (ii) the mode of X.

Question 1c

(c) (i) Write down $P\left(X=\frac{\pi}{3}\right)$.

(ii) Show that the median, m, of X lies in the interval $\frac{\pi}{6} < m < \frac{\pi}{3}$.

[2 marks]

Page 2 of 12

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2a

The continuous random variable X has probability density function

$$f(x) = \begin{cases} k(x+4), & 0 \le x \le 1\\ k(6-x), & 1 < x \le 6\\ 0, & \text{otherwise} \end{cases}$$

(a) Find the value of k.

[3 marks]

Question 2b

(b) Sketch the probability density function.

Question 2c

(c) Find:

(i) E(X),(ii) Var(X),(iii) $P(0.5 \le X \le 1.5).$

[6 marks]

Question 3a

The discrete random variable, X, has probability distribution function

$$f(x) = \begin{cases} \frac{k}{2x}, & x = 2, 4, 6, 12\\ 0, & \text{otherwise} \end{cases}$$

(a) Show that k = 2.

Question 3b

(b) Find the expected value and variance of X.

[2 marks]

Question 3c

As part of a game, a four-sided spinner is created with the numbers 2, 4, 6 and 12. The discrete random variable X is used to model the number that the spinner lands on. The score allocated to a player on their turn is 4 more than double the value the spinner lands on.

(c)

Find the expected value and variance of a player's score from a single spin.

[2 marks]

Question 4a

A UK energy company charges ± 0.22 per kilowatt hour (kWh) of electricity used. The amount of energy used per day by the company's customers, X kWh, follows the following probability density function

$$f(x) = \begin{cases} \frac{x(k-x)}{972}, & 0 \le x \le 18\\ 0, & \text{otherwise} \end{cases}$$

(a) Show that k = 18.

Question 4b

(b)

A customer's total daily charge consists of a fixed (standing) charge of £0.38 per day plus the charge for the electricity used. (i)

Find the expected total daily charge.

(ii)

Find the standard deviation for the total daily charge.

[6 marks]

Question 5a

Consider the function f defined by,

$$f(x) = \begin{cases} k(x-4)(x-5)^2, & 4 \le x \le 5\\ 0, & \text{otherwise} \end{cases}$$

(a)

Use your GDC to verify that f(x) can represent a probability density function for a continuous random variable X in the case when k = 12. Explain your verification process in full.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5b

(b) Use your GDC to find the mode of *X*.

[1 mark]

Question 5c

(c) Use your GDC to estimate the median of X.

[2 marks]

Question 6a

Consider the probability density function for a continuous random variable, ${\cal X}$

$$f(x) = \begin{cases} \frac{1}{64}(3x-20), & a \le x \le 12\\ \frac{1}{64}(x-16)^2, & 12 \le x \le 16\\ & 0, & \text{otherwise} \end{cases}$$

(a)

(i) Given that $P(12 \le X \le 16) = \frac{1}{3}$, find the value of a.

(ii)

Briefly explain how, without further calculations, it can be deduced that the median of X, m, lies in the interval $a \le m \le 12$.

Question 6b

(b)
Find
(i)
E(X)
(ii)
$E(X^2)$
(iii)
Var(X).

[4 marks]

Question 7a

In a quick-fire quiz consisting of 25 questions, contestants have just over 2 seconds to answer each question. The time taken on any single question in the quiz is modelled by the continuous random variable, T, which has probability density function

$$f(t) = \begin{cases} \sin\frac{1}{2}t, & 0 \le t \le T_{\max} \\ 0, & \text{otherwise} \end{cases}$$

a)

Find the exact value of $T_{\rm max}$ and verify that this is just over 2 seconds.

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 7b

(b)

Find the probability that a contestant takes between 1 and 2 seconds to answer a question.

[2 marks]

[1mark]

[1mark]

Question 7c

(c) Sketch the graph of y = f(t).

Question 7d

(d) Write down the mode of ${\cal T}$.

Question 7e

(e) Find the median of T.

[2 marks]

Question 7f

(f) Find the mean time for a contestant to answer all 25 questions.

Question 8a

The continuous random variable, Θ , has probability density function

$$f(\theta) = \begin{cases} \frac{1}{p} \cos(\theta - q), & a \le \theta \le a + \pi \\ 0, & \text{otherwise} \end{cases}$$

a)

Given that f(a) = 0, write down, in terms of a, the mean, median and mode of Θ , briefly explaining how you obtained your answers.

[2 marks]

Question 8b

- (b) (i) Given that $a = \frac{\pi}{6}$, deduce the smallest positive value of q.
 - (ii) Hence, or otherwise, find the value of p.

Question 8c

(c)

R and *S* are values of Θ such that $P(\Theta < R) = P(\Theta > S)$. Write down an equation connecting *R* and *S*.

[1mark]

Question 9a

Two random variables, X and Y are such that E(3X+5) = Var(3Y+5).

It is also known that $E(Y) = \sqrt{E(X)}$ and $E(Y^2) = [E(X)]^2$.

(a) Show that $9[E(X)]^2 - 12E(X) - 5 = 0$.

[3 marks]

Question 9b

(b) Given that E(X) > 0, find E(X).

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 10a

Consider the function

$$f(x) = \frac{1}{2\pi}\sqrt{4-x^2}$$

a) Sketch the graph of y = f(x).

[2 marks]

Question 10b

(b)

Write down a domain for f(x) such that it could be a probability density function for a continuous random variable X.

[1mark]

Question 10c

(c) Write down (i) P(X < -1),(ii) E(X),(iii) The median of X.