

5.3 Bond Enthalpy

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Торіс	5.3 Bond Enthalpy
Difficulty	Easy

Time allowed:	20
Score:	/10
Percentage:	/100

Question 1

The reaction pathway for a reversible reaction is shown below:

Which statement is correct?

- A. The activation energy of the reverse reaction is +90 kJ mol^{-1} $\,$
- B. The activation energy of the forward reaction is +20 kJ mol⁻¹
- C. The activation of the reverse reaction is +20 kJ mol⁻¹
- D. The enthalpy change of forwards reaction is 70 kJ mol⁻¹

Question 2

The reaction pathway for a reversible reaction is shown below.

Which statements are correct?

I. The forward reaction is endothermic

II. The enthalpy change for the backward reaction is -30 kJ mol⁻¹

III. The activation energy for the forward reaction is +90 kJ mol⁻¹

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 3

Hydrogen atoms bond covalently to iodine atoms to form hydrogen iodide as shown in the equation below:

 $\mathsf{H}_2(\mathsf{g}) + \mathsf{I}_2(\mathsf{g}) \rightarrow 2\mathsf{HI}(\mathsf{g})$

Which statement best describes what is meant by the average HI bond enthalpy?

- A. The energy stored in a covalent bond.
- B. The energy required to break one covalent bond in the gas phase.
- C. The energy required to break one mole of the HI bonds in the gas phase.
- D. The energy released when two atoms form a covalent bond.

Question 4

The enthalpy of atomisation of a compound can be calculated using a range of different enthalpy changes.

Which statement below correctly describes the enthalpy change of atomisation?

- A. The energy stored in a covalent bond
- B. The energy required to break one covalent bond in the gas phase
- C. The energy required to break all bonds in an element
- D. The energy released when two atoms form a covalent bond

[1mark]

Question 5

Which quantity gives the best indication of the relative strength of the hydrogen bonds between water molecules in the liquid state?

- A. Enthalpy changes of vaporisation
- B. Bond dissociation energies
- C. Enthalpy of formation
- D. Activation energy

[1mark]

Question 6

When a sample of calcium oxide, CaO, is added to dilute hydrochloric acid the temperature rises. Which of the following statements is correct?

- A. More bonds are broken than are formed in the reaction
- B. More bonds are formed than are broken in the reaction
- C. The energy of the bonds broken is greater than of the bonds formed
- D. The energy of the bonds broken is less than of the bonds formed

Question 7

Which is the correct definition of mean bond enthalpy?

- A. The amount of energy required to break a specific covalent bond in the gas phase
- B. The energy required to break one mole of a specific covalent bond with all chemicals in their standard states
- C. The amount of energy required to break a specific covalent bond with all chemicals in their standard states
- D. The energy required to break one mole of a specific covalent bond in the gas phase, with all chemicals in their standard states

[1mark]

Question 8

This energy profile diagram represents the reaction pathway for the following reaction:

Which statement is true about the reverse reaction, $W(g) + X(g) \rightarrow Y(g) + Z(g)$?

- A. It will have a negative ΔH
- B. It will have a positive ΔH
- C. It will have a smaller activation energy
- D. The temperature of the surroundings increase

Question 9

Which of the following statements about oxygen and ozone are correct?

- I. Ozone contains delocalised $\pi\,bonds$
- II. The bond orders of oxygen and ozone are not the same
- III. The bond in oxygen requires radiation of higher energy and longer wavelength than the bond in ozone to break
- A. I and II only
- B. I and III only
- C. II and III only
- D.I, II and III

[1 mark]

Question 10

The reaction of hydrogen with iodine to form hydrogen iodide is shown below:

 $H_2 + I_2 \rightarrow 2HI$

Use the bond energy data given to calculate the enthalpy of reaction, ΔH^{Θ}_{r} .

Bond	Energy, kJ mol ⁻¹
H-H	432
_	149
H-I	295

A. $\Delta H_{r}^{\Theta} = 432 + 149 + 295$

B. $\Delta H_{r}^{\Theta} = 432 + 149 + (2 \times 295)$

C. $\Delta H_{r}^{\Theta} = 432 + 149 - (2 \times 295)$

D. $\Delta H_{r}^{\Theta} = 432 + 149 - 295$