

3.11 Vector Planes

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.11 Vector Planes
Difficulty	Very Hard

Time allowed:	130
Score:	/105
Percentage:	/100

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 1

Determine whether the points A(1, -1, 8), B(0, 10, 15), C(-2, -6.10) and D(3, -5, 3) can lie in the same plane.

[9 marks]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 2a

The plane
$$\Pi$$
 has vector equation $\mathbf{r} = \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix}$
The line L has vector equation $\mathbf{r} = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}$

The plane Π and the line L intersect at the point X.

(a) $\label{eq:final} \mbox{Find the coordinates of X}.$

[3 marks]

Question 2b

(b)

Find the acute angle, in degrees, between the line L and the plane Π .

[5 marks]

Question 2c

The point P(2, 6, -1) lies on the line L .

(c)

Find the shortest distance between the point P and the plane $\varPi.$ Fully justify your answer.

[4 marks]

Question 3

Find the acute angle, in radians, between the two planes Π_1 and Π_2 which can be defined by the equations:

$$\Pi_{1}: 7x + 3y - 2z = 84,$$
$$\Pi_{2}: r = \begin{pmatrix} 11\\-7\\9 \end{pmatrix} + \lambda \begin{pmatrix} -2\\5\\0 \end{pmatrix} + \mu \begin{pmatrix} 1\\6\\-4 \end{pmatrix}.$$

[7 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4a

The plane Π_1 is defined by the equation x - 2y - 2z + 15 = 0 and the line L is defined by the vector equation

$$\mathbf{r} = \begin{pmatrix} -5\\1\\4 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-3\\5 \end{pmatrix}.$$

(a) Show that the line L lies on the plane $\varPi_1.$

[2 marks]

Question 4b

The plane
$$\Pi_2$$
 is defined by the equation $\mathbf{r} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix} + s \begin{pmatrix} 12 \\ -1 \\ 7 \end{pmatrix} + t \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$

Show that the plane \varPi_2 is parallel to the plane $\varPi_1.$

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4c

(c)

Find a vector equation of the line that is perpendicular to both planes and passes through the point P(3, 1, 4).

[2 marks]

Question 4d

(d) Hence find the shortest distance between \varPi_1 and \varPi_2 .

[4 marks]

Question 5a

The plane Π has the Cartesian equation x + 4y + 2z + 25 = 0.

The line *L* has the Cartesian equation $\frac{3-x}{2} = k(y+2) = z + \frac{1}{5}$, where $k \in \mathbb{R}$.

(a)

Show that the L is not parallel to the plane Π .

[3 marks]

Question 5b

(b)

Given that the acute angle between the line L and the plane Π is 60°, find the possible values of k.

[7 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 6a

Consider the two planes defined by the Cartesian equations:

$$\Pi_1 : 3x - 5y + 2z = 9$$
$$\Pi_2 : 4x + 2y - z = 13.$$

The line L is the intersection of the planes $\varPi_1 \text{ and } \varPi_2.$

(a)

Find a vector equation of the line *L*. Give your answer in the form
$$\mathbf{r} = \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} + \lambda \begin{pmatrix} c \\ d \\ e \end{pmatrix}$$
 where *a*, *b*, *c*, *d*, *e* $\in \mathbb{Z}$.

[5 marks]

Question 6b

A third plane Π_3 has the Cartesian equation x + 3y + kz = 10 where $k \in \mathbb{R}$. The three planes do not meet at a unique point.

(b)

Find the exact value of k and determine the geometrical relationship between the three planes.

[5 marks]

Question 7a

Consider the four planes with Cartesian equations:

 $\Pi_{1}: 6x - y + 3z = 16$ $\Pi_{2}: 4x + ky + 2z = 4$ $\Pi_{3}: 2x - 5y + 2z = 7$ $\Pi_{4}: x + 3y - z = m$

where k and m are real constants.

(a)

In the case where there is no unique point of intersection of the three planes Π_1, Π_2 and Π_3 , find the value of k and give a geometric interpretation of the three planes.

[2 marks]

Question 7b

(b)

In the case where k = 6, find the coordinates of the point of intersection between the three planes Π_1, Π_2 and Π_3 .

[4 marks]

Question 7c

(c)

In the case where there is a common line of intersection between the three planes Π_2 , Π_3 and Π_4 , find the values of k and m.

[5 marks]

Question 8a

The point P(2, 0, -1) is reflected in the plane Π which has equation r. $\begin{pmatrix} 4 \\ -3 \\ 5 \end{pmatrix} = 78$.

(a) Find the coordinates of the reflection of P in the plane $\varPi.$

[7 marks]

Question 8b

The line L_1 passes through the point P and intersects the plane Π at the point Q(8, 3, 11). The line L_1 is reflected in the plane Π to form line L_2 .

(b)

Find a vector equation of the line L_2 .

[2 marks]

Question 8c

(c) Find the acute angle, in degrees, between the lines ${\cal L}_1$ and ${\cal L}_2$.

[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 9a

Two planes are defined by the equations:

 $\Pi_1 : x + 2y - z = 5,$ $\Pi_2 : 2x + 5y + 2z = 7.$

(a)

Find the exact value of $\cos \theta$ where θ is the acute angle between Π_1 and Π_2 .

[3 marks]

Question 9b

 Π_1 and Π_2 intersect at the line $L_{1,2}$. A third plane Π_3 is defined by the equation x + ky + 11z = m where $k, m \in \mathbb{R}$ and Π_3 is perpendicular to Π_1 . When m = a the line $L_{1,2}$ lies on all three planes.

(b) Find the values of k and a.

[4 marks]

Question 9c

Given that $m \neq a$, Π_1 and Π_3 intersect at the line $L_{1,3}$, Π_2 and Π_3 intersect at the line $L_{2,3}$. The shortest distance between the lines $L_{1,2}$ and $L_{1,3}$ is $\sqrt{11}$.

(c)

Find the shortest distance between the lines $L_{1,2}$ and $L_{2,3}. \, {\rm Give}\, {\rm your}\, {\rm answer}\, {\rm as}\, {\rm an}\, {\rm exact}\, {\rm value}.$

[3 marks]

Question 10

The plane Π is defined by the Cartesian equation 4x - 5y + 3z = 59.

The line L is defined by the Cartesian equation $\frac{4-x}{2} = y+1 = 2(z-3)$.

Determine whether the point P(5, 8, 15) is closer to the plane Π or the line L.

Fully justify your answer.

[12 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 14 of 14