

5.1 Electric Fields

Question Paper

Course	DP IB Physics
Section	5. Electricity & Magnetism
Торіс	5.1 Electric Fields
Difficulty	Easy

Time allowed:	20
Score:	/10
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 1

Identify the unit defined as 'the charge carried by an electric current of one ampere in one second'.

- A. Current.
- B. Potential difference.
- C.Coulomb.
- D. Ampere.

[1mark]

Question 2

Two different equations can be used to calculate the same physical quantity, x.

$$x = \frac{\Delta q}{\Delta t}$$
 and $x = nAvq$

What quantity is represented by x?

- A. Drift velocity.
- B. Current.
- C. Charge on a charge carrier.
- D. Potential difference.

[1mark]

Question 3

Select the correct quantity and unit for this definition;

'the rate of flow of electric charge past a cross-section of material'

	Quantity	Unit
Α.	charge	coulomb
В.	charge	ampere
C.	current	coulomb
D.	current	ampere

[1mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4

An electric field is a region of space in which an electric charge is subjected to a force. Electric fields can be represented with vector diagrams showing the direction of force around a point charge.

Select the pair of diagrams which correctly represent the field lines around a positive and negative charge.

Α.

В.

D.

C.

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 5

The diagram shows charged particles moving in a metallic material. Choose the line which correctly identifies the missing labels.

	1	2
Α.	current	electric current
В.	voltage	drift speed
C.	voltage	electric current
D.	current	drift speed

[1 mark]

Question 6

Which of the following is a possible drift speed for delocalised electrons in a copper wire?

A. $12 \times 10^{-8} \,\mathrm{m\,s^{-1}}$

 $B.4.5 \times 10^{-4} \,\mathrm{m\,s^{-1}}$

 $C.8.6 \, m \, s^{-1}$

 $D. 3.0 \times 10^8 \, m \, s^{-1}$

[1mark]

	SaveMyExams
Head to <u>savemy exams.co.uk</u> for more a we some resources	

Question 7

Which statement correctly describes a property of the drift velocity, v.

- A. v is indirectly proportional to current, I
- B. v is directly proportional the to charge carrier density, n
- C. v is directly proportional to current, I
- D. v is directly proportional the to cross-sectional area of the conductor, A

Question 8

Determine the energy of 4 eV in Joules.

A. 6.4 × 10⁻¹⁹ J B. 6.4 × 10⁻¹³ J C. 6.4 J

D. 2.1 J

Question 9

Identify the electrical item most likely to use direct current.

A. Washing machine.

B. Laptop.

C. Reading lamp.

D. Kettle.

[1mark]

[1mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 10

For electric field strength, identify the correct equation and description of the diagram.

	Equation	Description
Α.	$E = \frac{F}{q}$	The strength of the electric field is proportional to the number of lines per unit cross-sectional area
В.	$E = \frac{F}{q}$	The strength of the electric field is indirectly proportional to the number of lines per unit cross-sectional area
C.	$F = \frac{E}{q}$	The strength of the electric field is proportional to the number of lines per unit cross-sectional area
D.	$F = \frac{E}{q}$	The strength of the electric field is indirectly proportional to the number of lines per unit cross-sectional area

[1 mark]