

1.6 Further Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.6 Further Complex Numbers
Difficulty	Medium

Time allowed:	80
Score:	/62
Percentage:	/100

Question la

Consider
$$w = \frac{z_1}{z_2}$$
, where $z_1 = 2 + 2\sqrt{3}i$ and $z_2 = 2 + 2i$.

(a)

Express w in the form w = a + bi.

[2 marks]

Question 1b

(b) Write the complex numbers z_1 and z_2 in the form $re^{i\theta}$, $r \ge 0$, $-\pi < \theta < \pi$.

Question 1c

(c) Express w in the form $re^{i\theta}$, $r \ge 0$, $-\pi < \theta < \pi$.

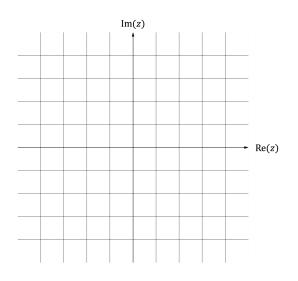
Question 2a

Consider the equation $z^4 - 1 = 15$, where $z \in \mathbb{C}$.

(a)

Find the four distinct roots of the equation, giving your answers in the form a + bi, where $a, b \in \mathbb{R}$.

[4 marks]


Page 2 of 10

[2 marks]

Question 2b

(b) Represent the roots found in part (a) on the Argand diagram below.

[2 marks]

Question 2c

(c)

Find the area of the polygon whose vertices are represented by the four roots on the Argand diagram.

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 3a

Let
$$z_1 = 6 cis(\frac{\pi}{6})$$
 and $z_2 = 3\sqrt{2}e^{i(\frac{\pi}{4})}$.

a)

Giving your answers in the form $rcis\theta$, find

(i)

 $z_{1}^{2}z_{2}^{2}$

(ii) Zı

 $\frac{z_1}{z_2}.$

[4 marks]

Question 3b

b) Write z_1 and z_2 in the form a + bi.

Question 3c

c) Find $z_1 + z_2$, giving your answer in the form a + bi.

[2 marks]

Question 3d

It is given that z_1^* and z_2^* are the complex conjugates of z_1 and z_2 respectively.

d) Find $z_1^* + z_2^*$, giving your answer in the form a + bi.

[2 marks]

Question 4a

Let
$$z_1 = 2 cis(\frac{\pi}{3})$$
 and $z_2 = 2 + 2i$.

a) Express

(i) z_1 in the form a + bi

(ii) z_2 in the form $r\,cis heta$

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4b

b) Find $w_1 = z_1 + z_2$, giving your answer in the form a + bi.

[2 marks]

Question 4c

c) Find $w_2 = z_1 z_2$, giving your answer in the form $r cis\theta$.

[3 marks]

Question 4d

d) Sketch w_1 and w_2 on a single Argand diagram.

[2 marks]

Question 5a

It is given that that $z_1 = 2e^{i\left(\frac{\pi}{3}\right)}$ and $z_2 = 3cis(\frac{n\pi}{12})$, $n \in \mathbb{Z}^+$.

a) Find the value of $z_1 z_2$ for n = 3. Head to <u>savemyexams.co.uk</u> for more awesome resources

[3 marks]

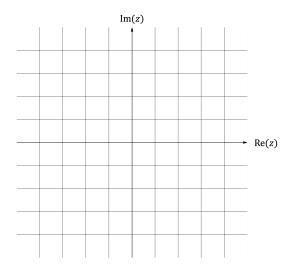
Question 5b

b) Find the least value of n such that $z_1 z_2 \in \mathbb{R}^+.$

[3 marks]

Question 6a

Consider the complex number $w = \frac{z_1}{z_2}$ where $z_1 = 3 - \sqrt{3}i$ and $z_2 = 2cis\left(\frac{2\pi}{3}\right)$.


a) Express w in the form $r cis\theta$.

[5 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 6b

b) Sketch z_1 , z_2 and w on the Argand diagram below.

[3 marks]

Question 6c

c)

Find the smallest positive integer value of n such that w^n is a real number.

[2 marks]

Page 8 of 10

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 7a

Consider the complex numbers $w = 3\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ and $z = 3 - \sqrt{3}i$.

(a)

Write w and z in the form $r \operatorname{cis} \theta$, where r > 0 and $-\pi < \theta \le \pi$.

[4 marks]

Question 7b

(b) Find the modulus and argument of *zw*.

[2 marks]

Question 7c

(c) Write down the value of *zw*.

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 8

Write $5\cos(2t+3) + 4\cos(2t+5)$ in the form $A\cos(2t+B)$ where A > 0, $-\pi < B < \pi$.

[5 marks]