

## 5.4 Further Integration

**Question Paper** 

| Course     | DP IB Maths             |
|------------|-------------------------|
| Section    | 5. Calculus             |
| Торіс      | 5.4 Further Integration |
| Difficulty | Medium                  |

| Time allowed: | 110  |
|---------------|------|
| Score:        | /90  |
| Percentage:   | /100 |

#### Question la

(a) Find the indefinite integral for



[1 mark]

#### **Question 1b**

(b) Show that the exact value of the definite integral

$$\int_{1}^{4} \frac{1}{x} \, \mathrm{d}x$$

is 2 ln 2.

[3 marks]

Question 1c

(c) Find the indefinite integral for

$$\int 7e^{7x} \,\mathrm{d}x$$

[2 marks]

**Question 2a** 

(a) Integrate

 $\int \cos 2x \, \mathrm{d}x$ 

[2 marks]

#### Question 2b

(b) Show that

$$\int (3x-1)^3 \, \mathrm{d}x = \frac{1}{12}(3x-1)^4 + c$$

where *c* is a constant of integration.

#### Question 2c

(c) Find an expression for *y* given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{5x}$$

and that y = 1 when x = 0.

[3 marks]

#### Question 3a

(a) Find the indefinite integral for

$$\int \left(\sqrt{x} + \frac{3}{\sqrt{x}}\right) \,\mathrm{d}x$$

#### **Question 3b**

(b) Find the indefinite integral for

$$\int \frac{x^{\frac{2}{3}} + x^{\frac{11}{6}}}{x^2} \, \mathrm{d}x$$

[3 marks]

#### Question 4a

(a) Given that  $f(x) = 2x^3 + 4x$ , find f'(x).

[2 marks]

#### **Question 4b**

(b) Hence, or otherwise, find

$$\int \frac{3x^2+2}{2x^3+4x} \,\mathrm{d}x$$

[4 marks]

#### **Question 5a**

Consider the function  $f(x) = \ln (2x^2 + 1)$ .

(a) Find f'(x).

[3 marks]

#### **Question 5b**

(b) Hence, find

$$\int \frac{x}{2x^2 + 1} \, \mathrm{d}x$$

#### **Question 6**

Let  $f'(x) = x^2 \cos(x^3 + 1)$ .

Find f(x) given that f(-1) = 1.

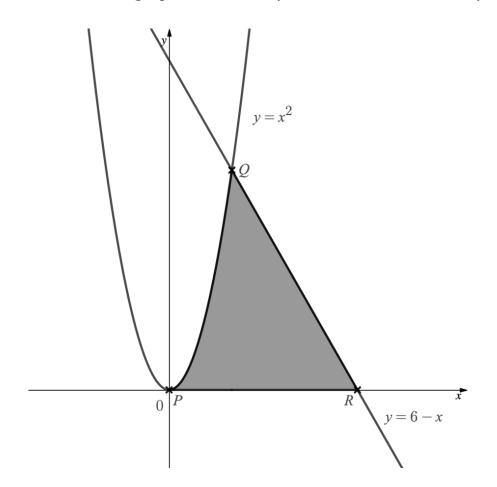
[5 marks]

#### Question 7a

(a) Show that

$$\frac{\tan x}{\sin x \cos x} = \frac{1}{\cos^2 x}$$

[2 marks]


#### Question 7b

(b) Hence find

$$\int \frac{3\tan x}{5\sin x\cos x} \,\mathrm{d}x$$

#### **Question 8a**

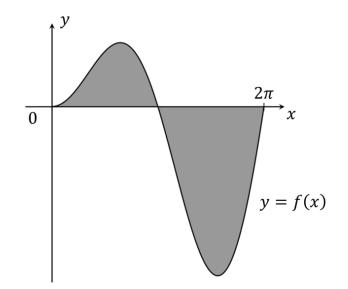
The diagram below shows the graphs of the line y = 6 - x and the curve  $y = x^2$ .



Point *P* is the point of intersection of the curve  $y = x^2$  with the *x*-axis. Point *Q* is the point of intersection of the curve  $y = x^2$  with the line y = 6 - x for which x > 0. Point *R* is the point of intersection of the line y = 6 - x with the *x*-axis.

(a) Write down the *x*-coordinates of points *P*, *Q* and *R*.

#### **Question 8b**


(b) Calculate the area of the shaded region.

[2 marks]

#### Question 9a

The diagram below shows the graph of the function *f* which is defined by

$$f(x) = x \sin x, \quad 0 \le x \le 2\pi$$



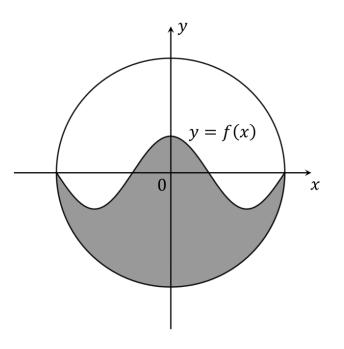
The shaded region in the diagram is the region enclosed by the *x*-axis and the graph of y = f(x).

(a) Find the area of the part of the shaded region that lies above the *x*-axis.

[4 marks]



#### Question 9b


(b) Find the area of the entire shaded region.

[3 marks]

Page 11 of 17

## Question 10a

The diagram below depicts the design for a new company logo. The logo is formed by a circle centred on the origin, which is divided into two regions by the curve y = f(x) where f is the function defined by  $f(x) = \cos \frac{3x}{2}$ ,  $-\pi \le x \le \pi$ . The points where the circle and the curve intersect lie on the *x*-axis, as shown.

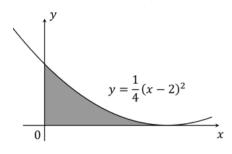


The shaded region in the diagram is the region inside that circle that lies below the curve y = f(x).

- (a) (i) Write down the radius of the circle that forms the outer border of the logo.
  - (ii) Hence determine the exact area of the shaded region.

[6 marks]




#### **Question 10b**

(b) Find the percentage of the circular logo that is shaded.

[2 marks]

#### **Question 11a**

The following diagram shows a part of the graph of the curve  $y = \frac{1}{4}(x-2)^2$ . The shaded region is the region enclosed by the graph and the positive x- and y-axes.



#### (a)

(i)

Find the coordinates of the points where the graph intersects the coordinate axes.

(ii)

For the part of the curve that forms the boundary of the shaded region, show that  $x = 2 - 2\sqrt{y}$ .

#### Page 13 of 17



[3 marks]

#### **Question 11b**

(b) Find the area of the shaded region

(i)

by calculating it as an area between the curve and the *x*-axis.

(ii)

by calculating it as an area between the curve and the y-axis.

[6 marks]

#### Question 11c

(C)

Find the volume of the solid formed when the shaded region is rotated  $2\pi$  radians about the x-axis.

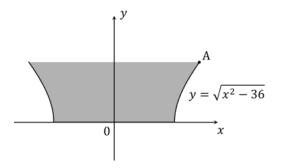
Page 14 of 17



[5 marks]

## Question 11d

(d) Find the volume of the solid formed when the shaded region is rotated  $2\pi$  radians about the y-axis.


[5 marks]

Page 15 of 17

**SaveMyExams** 

## Question 12a

The diagram below shows the cross-section of a bowl that a company is planning to begin producing.



As indicated on the diagram, one of the sides of the bowl in the cross-section may be described by the curve  $y = \sqrt{x^2 - 36}$ , where units for x and y are centimetres. The cross-section is entirely symmetrical about the y-axis. The flat circular bottom of the bowl has a diameter of 12 cm, and the vertical depth of the bowl is 6 cm. For purposes of answering this question, the thickness of the bottom and sides of the bowl may be regarded as negligible.

#### (a)

Find the exact coordinates of the point marked  $\boldsymbol{A}$  on the diagram.

[3 marks]

#### **Question 12b**

(b) Show that the capacity of the bowl in  $\mbox{cm}^3$  is given by

$$\pi \int_0^b (y^2 + 36) \mathrm{d}y$$

where b is a constant to be determined.

[4 marks]



#### **Question 12c**

(c) Hence find the capacity of the bowl.

[2 marks]