

2.8 Inequalities

Question Paper

Course	DP IB Maths
Section	2. Functions
Торіс	2.8 Inequalities
Difficulty	Hard

Time allowed:	70
Score:	/56
Percentage:	/100

Question la

(a) Sketch the graph of the function $f(x) = x(x-2)(x-4)^2$. Mark your sketch clearly with the x-coordinates of the x-axis intercepts.

[2 marks]

Question lb

(b) Write down the solution to the inequality $f(x) \le 0$.

[1mark]

Question 1c

(c)

Briefly explain how the graph shows that there are no real solutions to the inequality $f(x) + 10 \le 0$.

[2 marks]

Question 2

Consider the function defined by $g(x) = e^{-|x|}$.

(i) Sketch the graph of y = g(x). (ii) Solve the inequality $g(x) \ge 0.5$ using exact values.

[4 marks]

Question 3a

Consider the function $f(x) = 6x^3 - 19x^2 + 16x - 4$.

(a) Fully factorise f(x).

[2 marks]

Question 3b

(b) Solve (i) f(x) < 0(ii) f(2x) < 0(iii) f(x-3) < 0(iv) $|f(x-3)| \le 0$

[4 marks]

Question 4

Find the values of k such that the equation $kx = kx^2 + k - 2$ has real solutions and the equation $(4k - 3)x^2 + 2kx + 1 = 0$ has no real solutions.

[4 marks]

Question 5a

(a)

Giving answers to three significant figures, find the set of values of x that satisfy

$$|\sin(2x^\circ)| \ge 1 - \frac{x}{360}$$

for $0 \le x \le 360$.

[3 marks]

Question 5b

(b)

Explain how your answer to part (a) would differ if the domain of x was changed from $0 \le x \le 360$ to $x \in \mathbb{R}$.

[1mark]

Question 6a

(a) Write down the set of values of x for which $e^{2x} \le e^x$.

[1mark]

Question 6b

(b)

Find the set of values of x for which

- (i) $e^{2(x-4)} \le e^{x-4}$
- (ii) $e^{5(x-4)} \ge e^{-(x-4)}$

[2 marks]

Question 6c

(c) Find the set of values of x for which (i) $2\ln(x-4) \le \ln(x-4)$ (ii) $-\ln(x-4) \ge 5\ln(x-4)$.

[2 marks]

Question 7a

Consider the functions

$$f(x) = \frac{a}{a-x}$$
 and $g(x) = \frac{2a}{x-2a}$

where *a* is real constant such that $a \neq 0$.

(a) In terms of the constant a, find

- (i) the values of x for which f(x) and g(x) are undefined,
- (ii) the x-coordinate of any intersections between the graphs of y = f(x) and y = g(x).

[4 marks]

Question 7b

(b)

In the case a > 0, find the set of values of x in terms of a for which

(i) f(x) > g(x),

(ii) f(x) < g(x).

[3 marks]

Question 7c

(c) Repeat questions (b) (i) and (ii) in the case a < 0.

[2 marks]

Question 8a

 $f(x) = x^3 - 11x^2 + 40x - 48$

(a) (i) Show that x = 3 is a root of the function . (ii) Hence fully factorise f(x).

[3 marks]

Question 8b

(b) Solve the inequality $x^3 - 10x^2 + 32x - 32 \le (x - 4)^2$.

[3 marks]

Question 8c

(c)

Solve the inequality $(x + a)(x + b)^2 > 0$, where a and b are constants such that a > b > 0. Give your answers in terms of a and b.

[2 marks]

Question 9a

(a)

Consider the functions defined by $f(x) = x^2 - a$ and $g(x) = a - x^2$, where *a* is a positive constant. Solve the inequality f(x) < g(x), giving your answer in terms of *a*.

[3 marks]

Question 9b

(b)

Consider the functions defined by $p(x) = x^3 - b$ and $q(x) = b - x^3$, where b is a real constant. Solve the inequality p(x) < q(x), giving your answer in terms of b.

[2 marks]

Question 9c

(c) Consider the functions defined by $h(x) = x^n - m$ and $j(x) = m - x^n$, where m > 0and $n \in \mathbb{Z}^+$. Write down, in terms of m and n, the solution to the inequality h(x) < j(x) when (i) n is even, (ii) n is odd.

[3 marks]

Question 10

Consider the functions defined by $f(x) = a + \ln bx$ and $g(x) = a - \ln bx$ where a and b are positive constants. Show that

$$f(x) < g(x)$$
 for $0 < x < \frac{1}{b}$.

[3 marks]