

12.1 The Interaction of Matter with Radiation

Question Paper

Course	DP IB Physics
Section	12. Quantum & Nuclear Physics (HL only)
Торіс	12.1 The Interaction of Matter with Radiation
Difficulty	Medium

Time allowed:	70
Score:	/51
Percentage:	/100

Question la

(a)

[2]

[2 marks]

Question 1b

An electron is confined in a finite region of length 6.8×10^{-14} m.

Describe what is meant by the wave function of an electron.

(b)

Determine the uncertainty in the momentum of the electron.

[2]

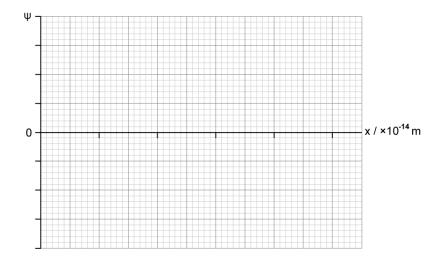
[2 marks]

Question lc

(c)

Determine the associated de Broglie wavelength of the electron if it was accelerated into its confinement through a potential difference of 5.5 GV.

[2]



Question 1d

(d)

On the axes provided, sketch the wave function Ψ of the electron described in part (b) and (c) with distance x.

[4]

Question 2a

When monochromatic light is incident on a clean metal surface, photoelectrons may be emitted through the photoelectric effect.

(a)

Outline how Einstein's model is used to explain the photoelectric effect.

[3]

[3 marks]

Question 2b

(b)

Explain why, although the incident light is monochromatic, the kinetic energies of emitted photoelectrons vary up to some maximum.

[2]

[2 marks]

Question 2c

(c)

Explain why no photoelectrons are emitted if the frequency of the incident light is less than a certain value, no matter how intense the light.

[2]

[2 marks]

Question 2d

For monochromatic light of wavelength 570 nm a stopping potential of 1.80 V is required for this particular metal surface.

(d)

Determine the minimum energy required to emit a photoelectron from the metal surface.

[2]

Question 3a

(a) Outline the de Broglie hypothesis.

[2]

[2 marks]

Question 3b

(b)

Explain why a precise knowledge of the de Broglie wavelength of an electron implies that its position cannot be measured.

[3]

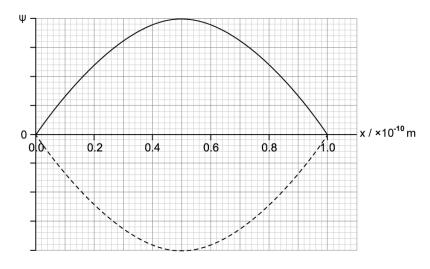
[3 marks]

Question 3c

The wave function of Schrödinger's theory can be thought of as a generalisation of the de Broglie hypothesis.

(c)

Outline the relationship between the wave function of Schrödinger's theory and the de Broglie hypothesis.


[3]

[3 marks]

Question 3d

The wave function ψ for an electron confined to length 1.0 × 10⁻¹⁰ m is a standing wave as shown.

(d)

(i)

Explain why the most likely position near which the electron is discoverable is the centre of the box.

(ii)

Calculate the momentum of the electron.

[2]

[2]

[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4a

One of the striking features of quantum theory is the ability of nature to convert matter into energy and vice versa.

Imagine an electron moving with kinetic energy E_k on a collision course with a positron moving in the opposite direction with the same kinetic energy. Following annihilation, two photons are produced.

(a)

Show that the wavelength λ of the two photons produced is given by the expression:

$$\lambda = \frac{2hc}{2m_ec^2 + m_ev^2}$$

where m_e is the mass of the electron.

[4]

[4 marks]

Question 4b

(b)

Hence, show that the maximum wavelength of photons produced during this annihilation is approximately 2.4×10^{-12} m.

[2]

[2 marks]

Question 4c

(c)

Show that the minimum wavelength of a photon that can produce an electron – positron pair is approximately 1.2×10^{-12} m.

[2]

[2 marks]

Question 4d

(d)

Explain why the value for wavelength in part (c) is only an estimate and not an accurate result.

[2]

[2 marks]

Question 5a

Monochromatic light is incident on a metal surface and electrons are emitted instantaneously from the surface.

(a)

Explain why:

(i)

electrons are emitted instantaneously.

(ii)

the energy of the emitted electrons does not depend on the intensity of incident light.

[2]

[2]

[4 marks]

SaveMyExams

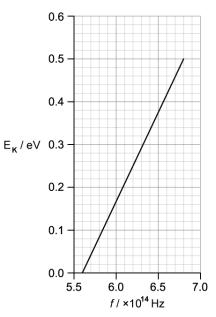
Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 5b

The wavelength of light incident in part (a) is 450 nm and the work function of the metal is 2.0×10^{-19} J.

(b)

Determine the maximum kinetic energy of an electron emitted from the metal surface.


[2]

[2 marks]

Question 5c

The light source used in part (b) is now incident on a different metal surface. Its frequency is varied, such that the kinetic energy of emitted electrons can be recorded.

The graph shows how the maximum kinetic energy $E_{\rm K}$ of the ejected electrons varies with the frequency of incident light.

(c)

Use the graph to determine a value for the Planck constant *h*.

[2]

Question 5d

(d)

Use the graph in part (c) to determine the work function of the metal.

[2]