

12.1 Electrons in Atoms

Question Paper

Course	DP IB Chemistry
Section	12. Atomic Structure (HL only)
Topic	12.1 Electrons in Atoms
Difficulty	Hard

Time allowed: 10

Score: /5

Percentage: /100

Question 1

Which statement is true about the spectra shown?

	Red end									В	Blu	e e	nd
P.													_
Q.													
R.													
s.								I					

- A. All the lines in R have the same energy
- B. Q and S could represent line emission spectra
- C. Only S could represent a line emission spectrum for hydrogen
- D. P indicates the element has 4 pairs of electrons at different energy levels

[1 mark]

Question 2

The energy absorbed at the limit of convergence for helium is $19.6\,\mathrm{x}\,10^{-18}\,\mathrm{J}$ per atom.

Which calculation would be used to calculate the wavelength, in m, for this electron transition?

 $(c = 3.00 \times 10^8 \text{ ms}^{-1}, h = 6.63 \times 10^{-34} \text{ Js})$

A.
$$\lambda = \frac{19.6 \times 10^{-18} \times 3.00 \times 10^8}{6.63 \times 10^{-34}}$$

B.
$$\lambda = \frac{3.00 \times 10^8 \times 6.63 \times 10^{-34}}{19.6 \times 10^{-18}}$$

$$C.\lambda = \frac{19.6 \times 10^{-18} \times 6.63 \times 10^{-34}}{3.00 \times 10^{8}}$$

$$D.\lambda = \frac{3.00 \times 10^8}{19.6 \times 10^{-18} \times 6.63 \times 10^{-34}}$$

[1 mark]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 3

The first ionisation energies (in kJ mol⁻¹) of five successive elements are:

2081, 496, 738, 578, 787

What could these elements be?

- A. First five elements in a period
- B. Second to the sixth elements in a period
- C. Last four elements of one period and the first one of the next period
- D. Last element of one period and the first four elements of the next period

[1 mark]

Question 4

A. B. C. D.

A period 3 element forms an oxide M_2O_3 .

Which represents the first four successive ionisation energies of M?

lonisation energy / kJmol ⁻¹									
First	Second	Third	Fourth						
496	4560	6940	9540						
578	1820	2740	11600						
1012	1907	2914	4964						
736	1450	7740	10500						

[1 mark]

Question 5

Between which ionisation energies of silicon will there be the greatest difference?

- $\hbox{A. Between the second and fourth ionisation energies}\\$
- B. Between the first and third ionisation energies
- C. Between the fourth and fifth ionisation energies
- D. Between the fifth and sixth ionisation energies

[1 mark]