

18.2 Calculations Involving Acids & Bases Question Paper

Course	DP IB Chemistry	
Section	18. Acids & Bases (HL only)	
Topic	18.2 Calculations Involving Acids & Bases	
Difficulty	Medium	

Time allowed: 10

Score: /5

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

The table shows the pK_a and K_a values for four acids

Acid	pK _a	K _a
Butanoic Acid	-	1.51 x 10 ⁻⁵
Nitrous acid	3.1	-
Lactic acid	3.4	-
Phenol	-	1x10 ⁻¹⁰

Which of the following is the correct order of increasing strength of the acids

- A. Phenol < butanoic acid < lactic acid < nitrous acid
- B. Nitrous acid < lactic acid < butanoic acid < phenol
- C. Nitrous acid < butanoic acid < phenol < lactic acid
- D. Phenol < lactic acid < butanoic acid < nitrous acid

[1 mark]

Question 2

Which of the following statements is correct?

- A. As temperature increases, the pH value of pure water decreases
- B. As temperature decreases, the pH value of pure water decreases
- C. The pH of water is unaffected by temperature
- D. Pure water is not neutral

[1 mark]

Question 3

Which of the following statements about conjugate acid and base pairs are correct?

١.

If an acid has a p K_a value of 4, its conjugate base will have a p K_b value of 10

II.

$$K_a + K_b = K_w$$

III.

The conjugate base for ethanoic acid is CH₃COO⁻

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 4

What is the correct expression to use to determine the pH of butanoic acid with concentration of $0.75 \, \text{mol dm}^{-3}$?

The K_a of butanoic acid at 298 K is 1.51 x 10 $^{-5}$ mol dm $^{-3}$

A.
$$-\log_{10}(1.51 \times 10^{-5} \times 0.75)$$

B.
$$-\log_{10}\sqrt{(1.51\times10^{-5}\times0.75)}$$

D.
$$\frac{0.75}{1.51 \times 10^{-5}}$$

[1 mark]

Question 5

What is the correct expression for the base dissociation constant, K_{b} , for propylamine?

$$A. K_b = \frac{[CH_3CH_2CH_2NH_3^+][OH^-]}{[CH_3CH_2CH_2NH_2]}$$

$$\mathsf{B.K_b} = \frac{[\mathit{CH_3CH_2CH_2NH_3}^+][\mathit{H_2O}]}{[\mathit{CH_3CH_2CH_2NH_2}]}$$

$$C. K_b = \frac{[CH_3CH_2CH_2NH_3^+][OH^-]}{[CH_3CH_2CH_2NH_2][H_2O]}$$

D.
$$K_b = [CH_3CH_2CH_2NH_3^+][OH^-]$$

[1 mark]