

2.9 Further Functions & Graphs

Question Paper

Course	DP IB Maths
Section	2. Functions
Topic	2.9 Further Functions & Graphs
Difficulty	Medium

Time allowed: 80

Score: /63

Percentage: /100

Question la

Sketch the graph of $y = (x-1)^2 - 2|x-1| - 1$, for $-3 \le x \le 6$.

[3 marks]

Question 1b

Hence, solve the equation $y = (x-1)^2 - 2|x-1| - 1 = 0$.

[2 marks]

Question 2

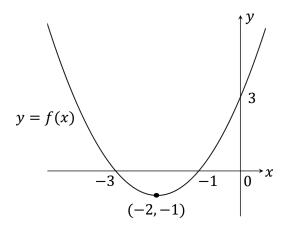
Given that

$$f(x) = \ln x, \qquad x > 0$$

sketch on separate axes the graphs of

$$y = f(x)$$

$$y = |f(x)|$$


$$y = -f(x-3)$$

On each diagram, show the x-intercepts along with any asymptotes, including their equations.

[7 marks]

Question 3a

The graph of y = f(x) is given below.

On separate axes, draw the graphs of

a) |f(x)|

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

_					-	
Qu	169	Н	0	n	.5	r

b)
[f(x)]²

[3 marks]

Question 4a

Sketch the curve $y = \frac{3}{x+4}$ and line y = 4 - x on the same axes, clearly indicating any x- and y- intercepts and any asymptotes.

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 4b

b)

Consider the equation

$$4 - x = \left| \frac{3}{x+4} \right|$$

(i)

Explain why the cases x < -4, x = -4 and x > -4 must be considered separately in attempting to solve the equation.

(ii)

Hence find the exact solutions to the equation.

[5 marks]

Question 5a

Consider the function f defined by $f(x) = 3x^2 \arcsin x$, $-1 \le x \le 1$.

a)

Sketch the graph of y = f(x).

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5b

b)

State the range of f.

[2 marks]

Question 5c

c)

Solve the inequality $|3x^2 \arcsin x| > 1$.

[3 marks]

Question 6a

Consider the function f defined by $f(x) = \sqrt{9-x}$, where f has the largest possible valid domain.

- a)
- (i)

Sketch the graph of y = f(x), labelling the x- and y-intercepts.

(ii)

State the domain and range of f.

[4 marks]

Question 6b

- b)
- (i)

On the same set of axes, sketch the graph of the function f(|x|), labelling the x- and y-intercepts.

(ii)

State the domain and range of the function f(|x|).

[4 marks]

Question 7a

Let
$$f(x) = \frac{7-9x}{cx-12}$$
, $x \neq \frac{12}{c}$, where c is a non-zero constant.

The line x = 4 is a vertical asymptote to the graph of y = f(x).

- a)
- (i)

Find the value of c.

(ii)

State the equation of the horizontal asymptote to the graph of y = f(x).

[4 marks]

Question 7b

b)

The line y = k, where $k \in \mathbb{R}$, intersects the graph of y = |f(x)| at exactly one point. Find the possible values of k.

[3 marks]

Question 8a

Let $f(x) = 2x^3 - 2x$, for $x \in \mathbb{R}$.

- (a)
- (i)

Sketch the graph of y = |f(x)|.

(ii)

State the transformation of the graph y = f(x) to y = |f(x)| for f(x) < 0.

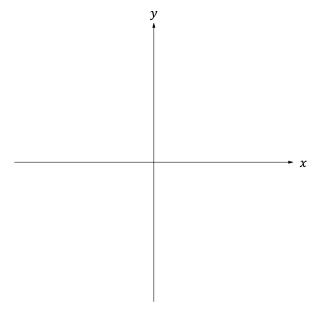
Question 8b

(b)

(i)

Sketch the graph of y = f(|x|).

(ii) State the transformation of the graph y = f(x) to y = f(|x|) for x < 0.


[3 marks]

Question 9a

Let
$$f(x) = x(x-2)$$
.

(a)

Sketch the graph of y = f(x) on the coordinate axes below. Be sure to label anywhere the graph intersects the coordinate axes and any extrema.

Question 9b

(b)

On the same axes, sketch the graph of the reciprocal $y = \frac{1}{f(x)}$. Be sure to label anywhere the graph intersects the coordinate axes and any extrema.

[3 marks]

Question 9c

(८)

Find the equation of the horizontal and vertical asymptotes of the graph of y = f(x).

[2 marks]