

9.1 Transport in the Xylem of Plants

Question Paper

Course	DP IB Biology	
Section	9. Plant Biology (HL Only)	
Topic	9.1 Transport in the Xylem of Plants	
Difficulty	Hard	

Time allowed: 10

Score: /5

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 1

Which of these is **not** a function of plasmodesmata in plant cells?

- A. To allow movement of water via the symplast pathway
- B. To enable cell recognition
- C. To allow communication between cells
- D. To allow movement of nutrients between cells

[1 mark]

Question 2

Certain plants have developed a mutualistic relationship with soil fungi, in which the plant provides sugars to the fungus for respiration.

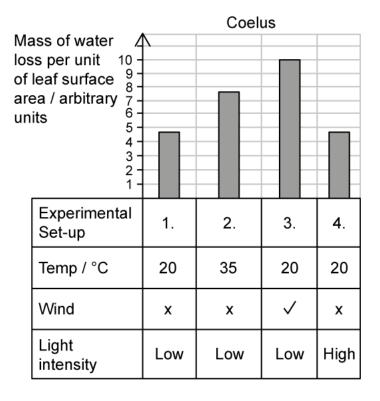
In what way does the plant receive a benefit in return?

- A. The fungus helps to stabilise the plant's root network in poor / stony soils.
- B. The fungus acts like a sponge to retain water in dry soils after (infrequent) rainfall.
- C. The fungus fixes atmospheric nitrogen and supplies nitrate ions to the plant.
- D. The fungus accesses mineral ions in mineral-deficient soils and supplies them to the plant's roots.

 $Head to \underline{save my exams.co.uk} for more awe some resources$

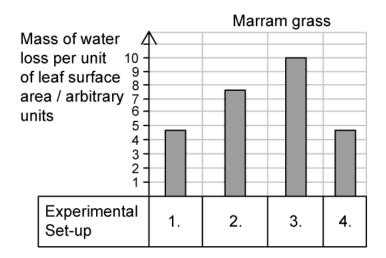
Question 3

Which table gives the most accurate summary of the movement of water via the apoplast and symplast pathways?

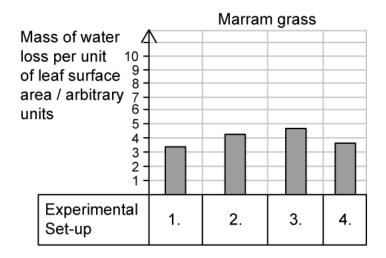

	Apoplast pathway	Symplast pathway
Routetravelled	Cell walls	Cytoplasm
Speed of flow	Slow	Fast
Method of flow	Mass flow	Osmosis
Volume of water transported	Low	High
	Apoplast pathway	Symplast pathway
Route travelled	Cell walls	Cytoplasm
Speed of flow	Fast	Slow
Method of flow	Mass flow	Osmosis
Volume of water transported	High	Low
	Apoplast pathway	Symplast pathway
Route travelled	Cytoplasm	Cell walls
Speed of flow	Fast	Slow
Method of flow	Mass flow	Osmosis
Volume of water transported	High	Low
	Apoplast pathway	Symplast pathway
Route travelled	Cell walls	Cytoplasm
Speed of flow	Fast	Slow
Method of flow	Osmosis	Mass flow
Volume of water transported	High	Low

Head to <u>savemy exams.co.uk</u> for more awe some resources

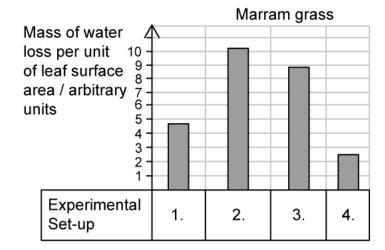
Question 4


The following data were gathered from an experiment into the rate of transpiration in samples of plants in the genus Coe*lus*, commonly grown by gardeners for herbaceous borders. Coe*lus* grows easily in UK gardens and thrives in the relatively high rainfall that the UK experiences.

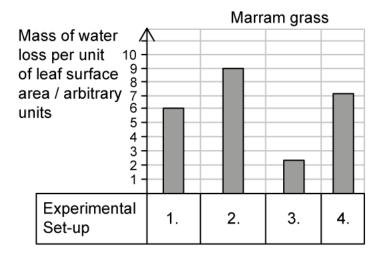
Marram grass is a xerophyte that is found on sand dunes and other fast-draining soils in coastal areas. The same experimental set-up was repeated with marram grass.


Which graph of **A - D** would be the most likely graph for a comparable experiment carried out on marram grass?

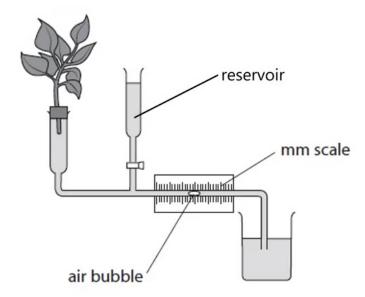
Α.



В.


 $Head to \underline{save my exams.co.uk} for more awe some resources$

C.



D.

Question 5

The diagram shows a potometer set up to measure the rate of transpiration in a piece of cut plant.

For a potometer with a cylindrical capillary of the internal diameter of d mm, the bubble was measured to travel h mm in an experimental time of s seconds.

Which is the correct formula to calculate the rate of transpiration (as a volume of water uptake per unit time) in this experiment?

A.
$$\frac{\pi \left(\frac{d}{2}\right)^2 h}{s}$$

B.
$$\frac{\pi d^2 h}{s}$$

C.
$$\pi \left(\frac{d}{2}\right)^2 h \ s$$

D.
$$\pi d^2 h s$$