

18.2 Calculations Involving Acids & Bases

Question Paper

Course	DP IB Chemistry
Section	18. Acids & Bases (HL only)
Торіс	18.2 Calculations Involving Acids & Bases
Difficulty	Hard

Time allowed:	40
Score:	/32
Percentage:	/100

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question la

Question 1b

a)

b)

Determine the K_a of benzoic acid using section 21 of the Data booklet.

Using the K_a value for benzoic acid, state and explain its acidic character.

[]] [1 mark]

[1]

[1mark]

Question lc

c)

Benzoic acid has a solubility of 0.344 g / 100 g water at 293 K. Determine the hydrogen ion concentration and pH of saturated benzoic acid solution at this temperature.

[5]

[5 marks]

Question 1d

d) What assumption is made in the calculation in part c)?

[1mark]

Question 2a

a)

Nitric acid, HNO_3 , and hydrocyanic acid, HCN, can be made from ammonia. Hydrocyanic acid has a p K_a of 9.21. Formulate equations for the dissociation of each acid and distinguish between the terms strong and weak in this context.

[3]

[3 marks]

Question 2b

b)

Write an expression for the acid dissociation constant, K_a , of hydrocyanic acid and calculate the K_a at 298 K.

[2]

[2 marks]

Question 2c

c)

Determine the hydrogen ion concentration and pH of 0.15 mol dm $^{-3}$ hydrocyanic acid.

[2]

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 2d

d)

Write an expression to show the ionisation of the conjugate base of hydrocyanic acid and calculate it K_b value.

[2]

[2 marks]

Question 3a

a)

Calculate the pH of a solution made by mixing 50.0 cm³ of 0.200 mol dm⁻³ HCI (aq) with 50.0 cm³ of 0.100 mol dm⁻³ NH₃ (aq)

[3]

[3 marks]

Question 3b

b) A 0.100 mol dm⁻³ solution of NH₃ (aq) contains 1.28 x 10⁻³ mol dm⁻³ in hydroxide ion.

i)

Determine the pH of the solution.

ii)

Comment on the relative base strength of 0.100 mol dm⁻³ NaOH (aq) compared to 0.100 mol dm⁻³ NH₃ (aq)

[2]

[3]

[5 marks]

Question 3c

c) Determine the base dissociation constant, K_b for ammonia using the information in part b).

[3]

[3 marks]

Question 3d

d) The pH of pure water is 6.92 at 328 K and K_b for NH₃ (aq) at this temperature is 1.80 x10⁻⁵. Determine the p K_a of [NH₄⁺] at this temperature.

[4]

[4 marks]

Page 6 of 6