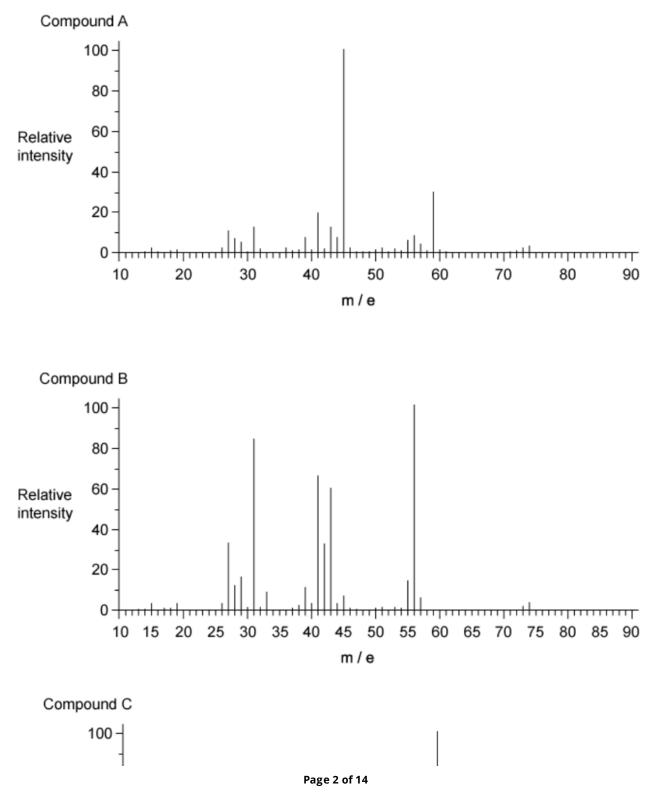
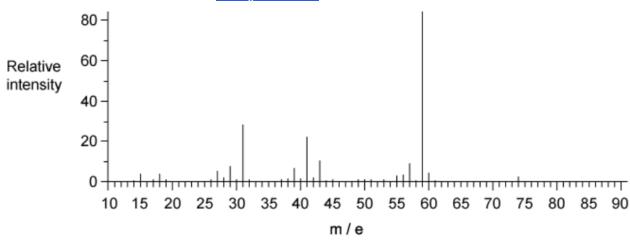


11.1 Spectroscopic Identification

Question Paper


Course	DP IB Chemistry
Section	11. Measurements & Data Processes
Торіс	11.1 Spectroscopic Identification
Difficulty	Hard

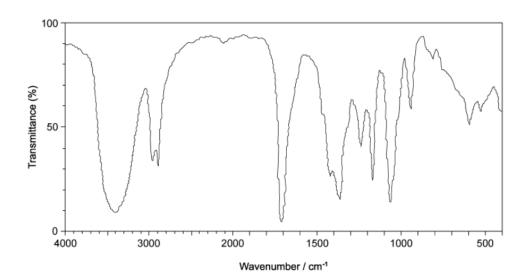
Time allowed:	20
Score:	/10
Percentage:	/100


SaveMyExams

Question 1

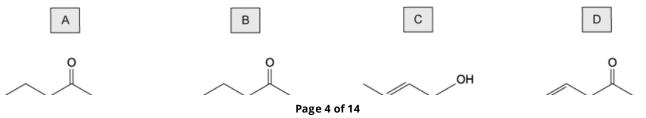
The mass spectra of three compounds A, B and C are shown below.

© 2015-2023 <u>Save My Exams, Ltd.</u> · Revision Notes, Topic Questions, Past Papers


What evidence from the spectra of the three compounds A, B and C, suggests they could be isomers?

- A all show a molecular ion peak at 74
- **B** all show a molecular ion peak at 13
- C all show a molecular ion peak at 73
- D all show a molecular ion peak at 33

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

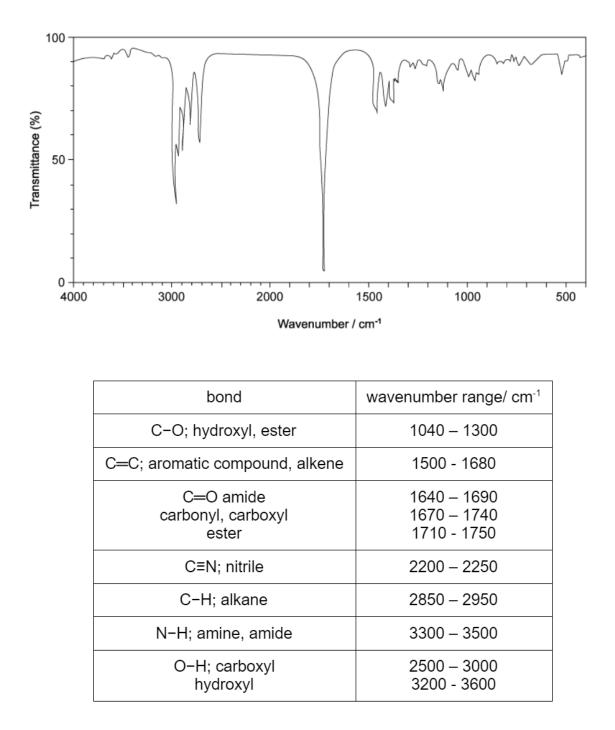

Question 2

The infrared spectrum below shows an unknown compound.

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C = O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N−H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

Which compound could have produced the infrared spectrum?

 $^{@2015-2023 \}underline{Save My Exams, Ltd.} \\ \cdot Revision Notes, Topic Questions, Past Papers \\$

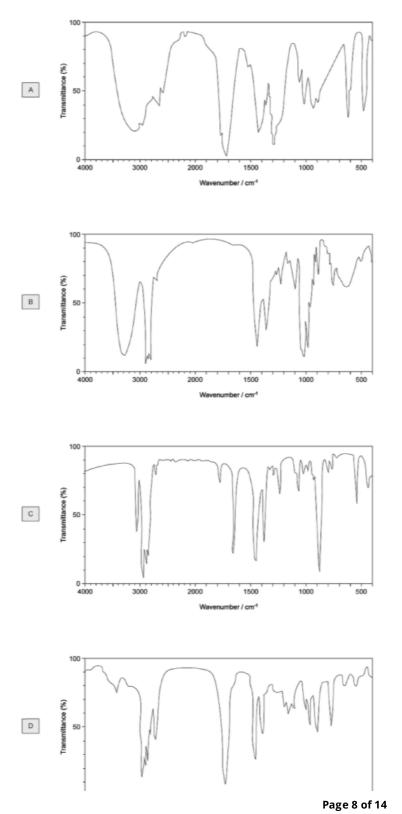

 ${\sf Headto} \underline{savemyexams.co.uk} for more a we some resources$

-	\sim	`он	HO	\sim	`	\sim	\sim	"	\sim	

Question 3

The diagram shows an infrared spectrum of a compound.

Which compound would give this spectrum?


A butanoic acid

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

- B butanal
- C butan-1-ol
- D 1-bromobutane

Question 4

Which of the following infrared spectra could show a carboxylic acid?

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

SaveMyExams

Head to <u>savemy exams.co.uk</u> for more a we some resources

0 4000 3000 2000 1500 1000 500 Wavenumber / cm⁴

bond	wavenumber range/ cm ⁻¹
C-O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C=O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N-H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 – 3000 3200 - 3600

[1mark]

Question 5

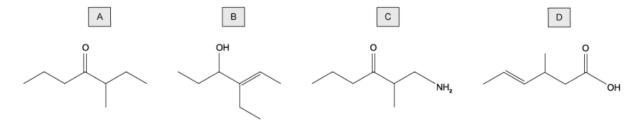
A periodic table is needed for this question

A compound XF_n is a fluoride of another halogen, X, and it is known that n > 1. The highest m/e peak in the mass spectrum of XF_n is assigned to the parent ion and comes as a single peak at m/e = 222.

Which of the following statements is incorrect?

A n = 5

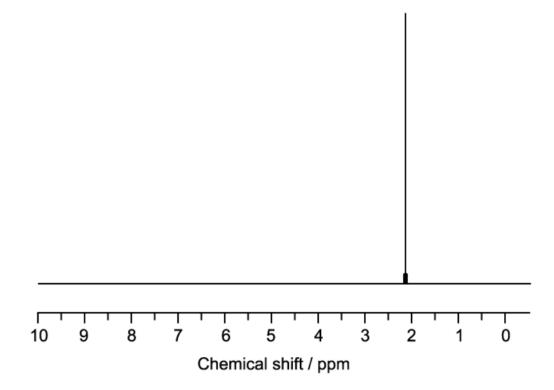
- **B** the compound could contain bromine
- C there are no isotopes of X or F
- **D** the compound is a fluoride of iodine


Question 6

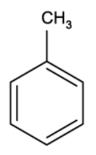
An organic compound is analysed by mass spectrometry and infrared spectroscopy. The following data is obtained.

mass spectrometry	infrared spectroscopy
molecular ion peak at <i>m/e</i> = 128	sharp peak at 1720 cm ⁻¹
fragment ion peak at <i>m/e</i> = 15	no broad peak around 3200 cm ⁻¹

bond	wavenumber range/ cm ⁻¹
C−O; hydroxyl, ester	1040 – 1300
C=C; aromatic compound, alkene	1500 - 1680
C = O amide carbonyl, carboxyl ester	1640 – 1690 1670 – 1740 1710 - 1750
C≡N; nitrile	2200 – 2250
C-H; alkane	2850 – 2950
N−H; amine, amide	3300 – 3500
O-H; carboxyl hydroxyl	2500 – 3000 3200 - 3600


Which of the following compounds could be consistent with the data given?

Question 7


What does the 1H NMR spectrum below tell you about a molecule?

- A There is only one isotope of hydrogen present in the molecule
- **B** The molecule is a hydrocarbon
- **C** There is only one hydrogen atom in the molecule
- **D** There is only one hydrogen environment in the molecule

Question 8

How many peaks would you expect to see in a ¹H NMR spectrum of methylbenzene?

- **A** 3
- **B** 4
- **C** 5
- **D** 6

Question 9

What is the index of hydrogen deficiency (IHD) for this molecule of aspirin?

Α	3
	-

- **B** 4
- **C** 5
- **D** 6

[1 mark]

Question 10

Which molecule has an index of hydrogen deficiency (IHD) = 1?

- A. C₆H₁₀
- B. C_2Br_2
- $C. \ C_4H_9N$
- D. C₃H₈O

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 14 of 14