

2.4 Functions Toolkit

Question Paper

Course	DP IB Maths
Section	2. Functions
Торіс	2.4 Functions Toolkit
Difficulty	Medium

Time allowed:	110
Score:	/90
Percentage:	/100

Question la

The functions *f* and *g* are defined such that f(x) = 4x - 10 and $g(x) = \frac{x+8}{2}$.

(a) Show that $(g \circ f)(x) = 2x - 1$.

[2 marks]

Question 1b

(b) Given that $(g \circ f)(a) = 27$, find the value of a.

Question 1c

(c) Show that $(f \circ g)(x) = 2x + 6$.

[2 marks]

[2 marks]

Question 1d

(d) Given that $(f \circ g)(b) = 44$, find the value of *b*.

SaveMyExams Headto savemy exams.co.uk for more a we some resources

Question 2a

The functions f(x) and g(x) are defined as follows

$f(x) = x^2$	$x \in \mathbb{R}$
g(x) = 4x - 3	$x \in \mathbb{R}$

(a) Write down the range of f(x).

[1mark]

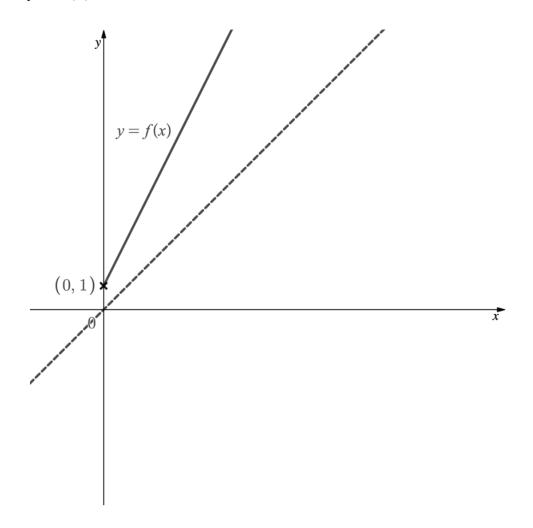
Question 2b

(b) Find

- (i) $(f \circ g)(x)$ (ii) $(g \circ f)(x)$

[4 marks]

Question 2c


(c) Solve the equation f(x) = g(x).

Page 3 of 16

[2 marks]

Question 3a

The graph of y = f(x) is shown below.

- (a) (i) Use the graph to write down the domain and range of f(x).
 - (ii) Given that the point (1, 1) lies on the dotted line, write down the equation of the line.

Question 3b

(b) On the diagram above sketch the graph of $y = f^{-1}(x)$.

[2 marks]

Question 4a

The function f(x) is defined as

f:
$$x \mapsto \frac{x^2 + 1}{x^2}$$
 $x \in \mathbb{R}, \ x \neq 0$

(a) Show that f(x) can be written in the form

$$f: x \mapsto 1 + \frac{1}{x^2}$$

[2 marks]

Question 4b

(b) Explain why the inverse of f(x) does not exist and suggest an adaption to its domain so the inverse does exist.

[2 marks]

Question 4c

(c) The domain of f(x) is changed to x > 0. Find an expression for $f^{-1}(x)$ and state its domain and range.

[4 marks]

Question 5a

The functions f(x) and g(x) are defined as follows

$f(x) = \frac{1}{2}(4x - 3)$	$x \in \mathbb{R}$
g(x) = 0.5x + 0.75	$x \in \mathbb{R}$

(a) Find (i) fa

(i)
$$fg(x)$$

(ii) $gf(x)$

Question 5b

(b) Write down $f^{-1}(x)$ and state its domain and range.

[3 marks]

Question 6a

A function is defined by f(x) = 54x - 13, -2 < x < 20.

(a) Find the value of $f\left(\frac{5}{2}\right)$.

[1 mark]

Question 6b

(b) Write down the range of f(x).

Question 6c

(c) Find the inverse function $f^{-1}(x)$.

[2 marks]

Question 6d

(d) Write down the range of the inverse function.

[1mark]

Question 7a

Consider the function f(x) = -6x - 3. The domain of f(x) is $-5 \le x \le 3$.

(a) Find

- (i) *f*(2)
- (ii) x when f(x) = 15.

[2 marks]

Question 7b

(b) Find the range of f(x).

🗲 Save My Exams Headto savemy exams.co.uk for more a we some resources

[3 marks]

Question7c

(c) Write down the domain of the inverse function.

[1mark]

Question 8a

Let $f(x) = -\frac{3}{x-3}$, for $x \neq 3$.

(a) For the graph of *f*, find:

- (i) the *x* – intercept
- (ii) the y intercept
- (iii) the range of f.

[4 marks]

Page 9 of 16

Question 8b

(b) Find the value of $f^{-1}(-1)$.

[2 marks]

Question 8c

(c) Given that g(x) = f(x + 3) + 1, find the domain and range of g.

[2 marks]

Question 9a

The functions *f* and *g* are defined for $x \in R$ by $f(x) = 3x^2 + 10x + 7$ and g(x) = x + d, where $d \in R$.

(a) Find the range of f.

Question 9b

(b) Given that $(g \circ f)(x)$ is always positive for all x, determine the set of possible values for d.

[4 marks]

Question 10a

Let $f(x) = \frac{2x-5}{x+8}$, where $x \neq a, x \in \mathbb{R}$.

(a) Write down

- (i) the value of *a*
- (ii) the range of f.

[2 marks]

Question 10b

(b) For the graph of *f*, find the equations of all the asymptotes.

Question 10c

(c) Find $f^{-1}(x)$.

[2 marks]

Question 10d

(d) For the graph of f^{-1} , find the equation of

- (i) the horizontal asymptote
- (ii) the vertical asymptote.

[2 marks]

Question 11a

Let f(x) = 2x + 1 for $x \in \mathbb{R}$.

(a) Write down an expression for the inverse function $f^{-1}(x)$.

Question 11b

Consider another function $g(x) = \frac{1}{2}(x-1)^2 + \frac{3}{2}$ for $x \ge k$, where k is an integer to be found.

(b) Given that the graph of *g* has an inverse, find the value of *k*.

[3 marks]

Question 11c

(c) Sketch the graphs of *f* and *g*, for the domain found in part (b), on the same set of axes, along with their inverses.

[4 marks]

Question 12a

Consider the function *f* defined by $f(x) = 2x^3 + 3x^2 - 36x + 7$, $x \in \mathbb{R}$.

(a) Sketch the graph of f. Clearly label the points where the graph intersects the axes, along with any points that are local maxima or minima.

[2 marks]

Question 12b

Let the function g be defined by $g(x) = 2x^3 + 3x^2 - 36x + 7$, $x \le p$.

- (b) Given that *g* has an inverse:
 - (i) Find the largest possible value of p
 - (ii) Find the domain of g^{-1} for the value of *p* identified in part (b)(i)
 - (iii) Find the value of $g^{-1}(0)$.

Question 12c

Let the function *h* be defined by $h(x) = 2x^3 + 3x^2 - 36x + 7$, $x \ge q$.

(c) Given that *h* has an inverse:

- (i) Find the smallest possible value of q
- (ii) Find the domain of h^{-1} for the value of q identified in part (c)(i)
- (iii) Find the value of $h^{-1}(0)$.

[3 marks]

Question 13a

A function *f* is called a self-inverse function if $f^{-1}(x) = f(x)$ for all values of *x* in the domain.

Let $f(x) = \frac{\pi^2}{x}$, where $x \neq 0, x \in \mathbb{R}$.

(a) Show that f(x) is a self-inverse function.

Question 13b

Let
$$g(x) = \frac{-x-2}{5x+1}$$
, where $x \neq p, x \in \mathbb{R}$.

(b) Find the value of *p*.

[1 mark]

Question 13c

(c) Show that g(x) is a self-inverse function.