

1.5 Complex Numbers

Question Paper

Course	DP IB Maths
Section	1. Number & Algebra
Торіс	1.5 Complex Numbers
Difficulty	Medium

Time allowed:	120
Score:	/95
Percentage:	/100

Question la

Consider the complex numbers $z_1 = 2 + 2i$ and $z_2 = 2 + 2\sqrt{3}i$.

a)

Sketch $z_1^{} \ {\rm and} \ z_2^{} \ {\rm on \ the \ Argand \ diagram \ below, \ be sure to include \ an \ appropriate \ scale.}$

[2 marks]

Question 1b

b) Find the modulus of $z_{\rm l}$ and $z_{\rm 2}.$

[3 marks]

Question lc

c) Find the argument of z_1 and z_2 .

[3 marks]

Question 2

Solve the following equations for x

(i) $x^{2} + 4x + 5 = 0$ (ii) $x^{2} = -625$

(iii) $x^4 = 24 - 2x^2$.

Question 3a

Let $w_1 = z_1 z_2$, where $z_1 = 5 + i$ and $z_2 = 1 + 2i$.

a) Express w in the form w = a + bi.

[2 marks]

Question 3b

b) Find the modulus and argument for *w*

[4 marks]

Question 4a

Let
$$z = \frac{w_1}{w_2}$$
, where $w_1 = 4 - i$ and $w_2 = 1 - 2i$.

a) Express z in the form z = a + bi.

[3 marks]

Question 4b

b) Find the modulus and argument for *z*.

[4 marks]

Question 5a

Consider the complex numbers z=3-4i and w=7-2i.

a)

Find

(i)

Z + W

(ii) W - Z.

[2 marks]

Question 5b

Let z^* and w^* represent the complex conjugates of z and w, respectively.

b)

Write down z^* and w^* , giving your answers in the form a + bi.

[2 marks]

Question 5c c) Find	
(i) $Z^* W$	
$\frac{(ii)}{\frac{W^*}{Z}}.$	
	[4 marks]

Question 6

Find all possible real values for a and b such that

(i)

a + bi = 8i

(ii) (2+3i)(a+bi) = 13

(iii) (a+i)(2+bi) = -6+22i.

Question 7

Consider the complex numbers w = iz and w + 2z = 7 + 6i.

Find

(i) $\operatorname{Re}(w)$

(ii)

Im(w)

(iii) Re(*z*)

(iv)

 $\operatorname{Im}(z)$.

Question 8

It is given that $z_1 = 3 + 4i$ and $z_2 = -2 + 2i$.

Find

 $\overset{(i)}{iz_1} + z_2 ^{}$

 $(ii) \\ \frac{z_1}{iz_2}$

(iii) $i(z_1 z_2).$

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 9

Find the complex numbers z and w such that

$$2z - iw^* = 5 + 7i$$

 $w + iz^* = 5 + 16i$

[8 marks]

Question 10a

Let z = 3 + 8i and w = 4 - 4i.

a)

Find heta, the angle shown on the diagram below.

[5 marks]

Question 10b

b)

Find the area of the triangle formed in the diagram above.

[3 marks]

Question 11a

Let z = -1 - 3i and w = 1 + i.

a) Find *zw*.

[2 marks]

Question 11b

b)

Sketch *z*, *w* and *zw* on the Argand diagram below.

Im(z)

[3 marks]

Question 11c

Let θ be the angle between z and zw and ϕ be the angle between w and zw.

c)

Find the angles θ and ϕ , giving your answers in degrees.

[4 marks]

Question 12a

Let
$$w = \frac{z+1}{z^*+1}$$
, where $z = a + bi$, $a, b \in \mathbb{R}$.

a) Write w in the form x + yi, x, $y \in \mathbb{R}$.

[4 marks]

Question 12b

b)

Determine the conditions under which w is purely imaginary.

[3 marks]

Question 13a

Consider the equation $x^2 + bx + c = 0$.

(a) Write down an inequality, in terms of *b* and *c*, that shows the equation has no real solutions.

[1 mark]

Question 13b

5 - 3i is one solution to the equation $x^2 + bx + c = 0$.

(b) Find the values of *b* and *c*.

[4 marks]

Question 13c

Let z = c + bi.

(c) Find z^5 using technology.

[1 mark]