

5.2 Hess's Law

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Topic	5.2 Hess's Law
Difficulty	Easy

Time allowed: 60

Score: /45

Percentage: /100

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question la

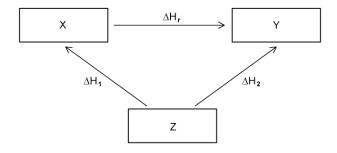
a)

State Hess's Law.

[1 mark]

Question 1b

b)

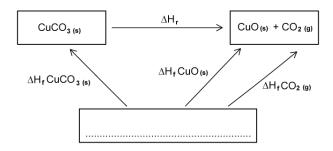

State the type of system in which the total amount of matter present is always constant.

[1 mark]

Question 1c

c)

Using the image below, construct an equation that can be used to determine ΔH_1 from ΔH_2 and ΔH_2 .



[1 mark]

Question 1d

d)

 $Complete the following \, Hess's \, Law \, cycle \, for \, the \, decomposition \, of \, copper \, carbonate.$

Page 2 of 8

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

[3 marks]

Question 2a

a)

Define standard enthalpy of formation, ΔH_f .

[2 marks]

Question 2b

h)

Write an equation to show the enthalpy of formation of 1 mole of the following compounds. Include state symbols in your equations.

[8 marks]

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 2c

c)

Using the equations given, construct a Hess's Law cycle for the following reaction. Include the values for ΔH_f in your cycle.

$$BaCl_2(s) + Zn(s) \rightarrow Ba(s) + ZnCl_2(s)$$

Ba (s) + Cl₂(g) \rightarrow BaCl₂(s) $\Delta H_f = -858.6 \text{ kJ mol}^{-1}$

 $Zn(s) + Cl_2(g) \rightarrow ZnCl_{2(s)}$ $\Delta H_f = -415.1 \text{ kJ mol}^{-1}$

[3 marks]

Question 2d

d)

Calculate the enthalpy of reaction, ΔH_r , for the reaction given in part (c).

[3 marks]

 $Head to \underline{save my exams. co.uk} for more a we some resources$

Question 3a

a)

Aluminium oxide reacts with magnesium to form magnesium oxide and aluminium in a displacement reaction via the following reaction.

Construct a Hess's Law cycle for this reaction

 $Al_2O_3(s) + 3Mg(s) \rightarrow 3MgO(s) + 2Al(s)$

Enthalpy of formation	Enthalpy of formation (kJ mol ⁻¹)
$\Delta H_f(Al_2O_3)$	-1675.7
ΔH _f (MgO)	-601.7
$\Delta H_f(Mg)$	
$\Delta H_f(Al)$	

[4 marks]

Question 3b

b)

Outline why no values are listed for AI(s) and Mg(s) in the table given in part (a).

[1 mark]

Question 3c

c)

Calculate the enthalpy change of reaction, ΔH_r , for the reaction in part (a).

[2 marks]

Question 4a

a)

Determine the enthalpy change of reaction, ΔH_r , for the following equations if they are reversed.

 $C_2H_4 + H_2 \rightarrow C_2H_6$ $\Delta H_r = -65.6 \text{ kJ} \dots$

 $2H_2O \rightarrow 2H_2 + O_2$ $\Delta H_r = +571 \text{ kJ} \dots \dots \dots \dots$

[3 marks]

Question 4b

b)

Using the information given in part (a), determine the enthalpy change for the following reaction.

$$2C_2H_4 + 2H_2 \rightarrow 2C_2H_6$$

[1 mark]

Question 4c

c)

Using the information in the table, deduce which equation should be reversed to determine the enthalpy change for the following reaction.

$$SiO_2 + 3C \rightarrow SiC + 2CO$$

Equation number	Equation	Enthalpy change (kJ)
1	$Si + O_2 \rightarrow SiO_2$	-911
2	2C+O ₂ →2CO	-211
3	Si+C→SiC	-65.3

[1 mark]

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 4d

d)

Use the information in part (c) to produce an overall cancelled down equation which can be used to determine the overall enthalpy change for the following reaction.

$$SiO_2 + 3C \rightarrow SiC + 2CO$$

[2 marks]

Question 4e

e)

Deduce the overall enthalpy change, in kJ, using the information in part (c) for the reaction $SiO_2 + 3C \rightarrow SiC + 2CO$

[2 marks]

Question 5a

a)

State the equation required to calculate the enthalpy change of reaction, ΔH_r , given enthalpy of formation, ΔH_f , data.

[1 mark]

Question 5b

b)

Using section 12 in the data booklet and the data in the table calculate the enthalpy change of reaction, ΔH_r , for the following reaction.

$$SO_2(g) + 2H_2S(g) \rightarrow 3S(s) + 2H_2O(l)$$

	SO ₂ (g)	H ₂ S (g)
$\Delta H_f(kJ \text{ mol}^{-1})$	-297	-20.2

[3 marks]

 $Head to \underline{save my exams. co.uk} for more a we some resources \\$

Question 5c

C)

Show how the equations can be used to produce an alternative route for this reaction.

 $C_2H_4 + H_2 \rightarrow C_2H_6$

	ΔH (kJ mol ⁻¹)
$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$	-1411
$C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2(g) + 3H_2O$	-1560
$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	-285.8

[2 marks]

Question 5d

d)

Calculate ΔH

[1 mark]