

5.4 Further Integration

Question Paper

Course	DP IB Maths	
Section	5. Calculus	
Торіс	5.4 Further Integration	
Difficulty	Very Hard	

Time allowed:	120
Score:	/92
Percentage:	/100

Question 1

Consider the function f defined by $f(x) = (x^2 - 3x + 2)(x + 2), x \in \mathbb{R}$.

Calculate the area of the region enclosed by the graph of y = f(x) and the *x*-axis.

[8 marks]

Question 2a

(a) Find the indefinite integral for

$$\int \sin\left(\frac{\sqrt{3}}{2}x\right) \, \mathrm{d}x$$

[2 marks]

Question 2b

(b) Find the indefinite integral for

$$\int \frac{7}{\mathrm{e}^{4x-9}} \,\mathrm{d}x$$

[2 marks]

Question 2c

(c) Find an expression for y given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos\left(2\left(\frac{\pi}{8} - x\right)\right)$$

[2 marks]

Question 3a

(a) Find the exact value of

$$\int_{-4}^{-1} -\frac{7}{5x} \, \mathrm{d}x$$

[3 marks]

Question 3b

(b) Find the definite integral

$$\int_{-\frac{\pi}{3}}^{0} \sin\left(\frac{\pi}{3} - 2x\right) \,\mathrm{d}x$$

[3 marks]

Question 3c

(c) Find an expression for *y* given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{x^2-2}$$

and also that y = 3 when $x = -\sqrt{2}$.

[3 marks]

Question 4

Use a suitable substitution to show that

$$\int_{3}^{4} \frac{x^{3}}{2(x+2)(x-2)} \, \mathrm{d}x = \frac{7}{4} + \ln\left(\frac{12}{5}\right)$$

[7 marks]

Fave My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 5a

Let *I* be the definite integral defined by

$$I = \int_{\frac{a}{k}}^{\frac{b}{k}} \sin^2(k\theta) \,\mathrm{d}\theta$$

where *a*, *b* and *k* are real constants such that $a \le b$ and k > 0.

(a) Show that

$$I = \frac{1}{2k} \left[(b-a) - \frac{1}{2} (\sin(2b) - \sin(2a)) \right]$$

[7 marks]

Question 5b

(b) Hence find the exact values of

(i)
$$\int_{\frac{\pi}{12}}^{\frac{\pi}{3}} \sin^2(2\theta) \,\mathrm{d}\theta$$

(ii)
$$\int_{-\frac{5\pi}{2}}^{10\pi} \sin^2\left(\frac{\theta}{5}\right) d\theta$$

[4 marks]

Question 6a

(a) Explain why

1 _		$\cos \theta$
$\tan\theta$	_	$\sin \theta$

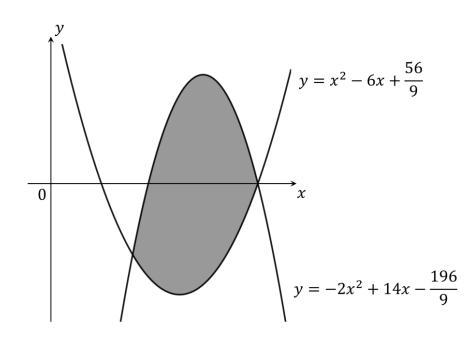
[2 marks]

Question 6b

(b) Use the result from part (a) to show that

$$\int_{0}^{\sqrt{\frac{\pi}{6}}} \frac{x}{\tan\left(x^{2} - \frac{2\pi}{3}\right)} \, \mathrm{d}x = -\frac{1}{2} \ln\left(\frac{\sqrt{3}}{2}\right)$$

[7 marks]


Question 6c

(c) Explain why the value of the integral found in part (b) is a positive number.

[1mark]

Question 7a

The diagram below shows a sketch of part of the curves with equations $y = x^2 - 6x + \frac{56}{9}$ and $y = -2x^2 + 14x - \frac{196}{9}$.

The shaded region in the diagram is the area bounded by the two curves.

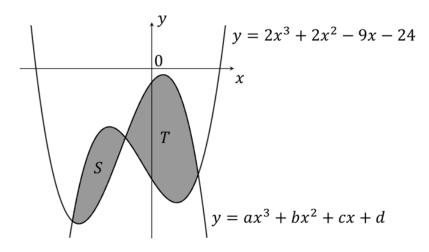
(a) By first showing that the area of the shaded region is given by

$$\int_{2}^{\frac{14}{3}} (20x - 3x^2 - 28) \, \mathrm{d}x$$

calculate the exact area of the shaded region

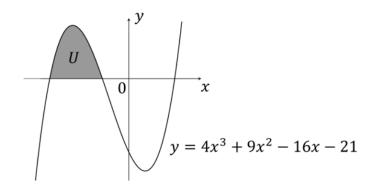
[6 marks]

Question 7b


(b) Explain why your answer to part (a) is not affected by the fact that the shaded region is partially above and partially below the *x*-axis.

[2 marks]

Page 10 of 16


Question 8

The diagram shows a sketch of part of the curves with equations $y = 2x^3 + 2x^2 - 9x - 24$ and $y = ax^3 + bx^2 + cx + d$, where *a*, *b*, *c* and *d* are constants with $a \neq 0$.

The *x*-coordinates of the points of intersection of the two curves are p, q and r, where p < q < r. Region *S* is the region enclosed by the two curves between x = p and x = q, while region *T* is the region enclosed by the two curves between x = q and x = r.

The diagram below shows a sketch of part of the curve with equation $y = 4x^3 + 9x^2 - 16x - 21$.

The curve intersects the *x*-axis at the points (p, 0), (q, 0) and (r, 0), and region *U* is the region enclosed by the curve and the *x*-axis between x = p and x = q.

Given that the areas of regions S and U are equal, calculate the total area enclosed by the two curves in the first diagram. Be sure to provide a suitable justification for your answer.

[7 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 12 of 16

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 9a

Consider the function h(x) such that

$$\int_{6}^{-3} h(x) \, \mathrm{d}x = 14 \quad \text{and} \quad \int_{2}^{5} h(x) \, \mathrm{d}x = 14$$

(a) Find

(i)
$$\int_{5}^{2} h(x) dx$$

(ii) $\int_{-2}^{-2} h(x) dx$
(iii) $\int_{-3}^{2} h(x) dx + \int_{5}^{6} h(x) dx$

[5 marks]

Question 9b

(b) Find

$$\int_{6}^{-3} \frac{7 - 3h(x)}{4} \, \mathrm{d}x$$

[3 marks]

Question 9c

(c) Given that h(2) = 3 and h(5) = 4, find

$$\int_2^5 h(x)(4h'(x)-\pi)\,\mathrm{d}x$$

[4 marks]

Question 10a

(a) Show that $5w^3 - 21w^2 + 16 = (5w + 4)(w^2 - 5w + 4)$.

Page 14 of 16

[2 marks]

Question 10b

A function *f* is defined by $f(x) = -\frac{16}{x^2} - 5x + 21$, $x \neq 0$.

Let *I* be the definite integral defined by

$$I = \int_{1}^{a} f(x) \, \mathrm{d}x$$

where a > 1 is a constant.

(b) Determine the value of *I*, giving your answer in terms of *a*.

[4 marks]

Question 10c

(c) Hence, or otherwise, determine the value of *a* which maximises the value of *I*, and calculate the value of *I* when *a* takes that value.

[8 marks]

© 2015-2023 <u>Save My Exams, Ltd.</u> Revision Notes, Topic Questions, Past Papers

Page 16 of 16