

7.1 Discrete Energy & Radioactivity

Question Paper

Course	DP IB Physics	
Section	7. Atomic, Nuclear & Particle Physics	
Topic	7.1 Discrete Energy & Radioactivity	
Difficulty	Hard	

Time allowed: 50

Score: /40

Percentage: /100

Question la

Transitions between three energy levels in a particular atom give rise to three spectral lines. In decreasing magnitudes, these are f_1 , f_2 and f_3 .

The equation which relates \boldsymbol{f}_1 , \boldsymbol{f}_2 and \boldsymbol{f}_3 is:

$$f_1 = f_2 + f_3$$

(a)

Explain, including through the use of a sketch, how this equation relates \boldsymbol{f}_1 , \boldsymbol{f}_2 and \boldsymbol{f}_3 .

[3]

[3 marks]

Question 1b

A different atom has a complete line emission spectra with a ground state energy of -10.0 eV. is:

(h)

Sketch and label a diagram of the possible energy levels for the atomic line spectra shown.

[5 marks]

[5 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$

Question lc (c) Explain the significance of an electron at an energy level of 0 eV. [3 mark	[3] <s]< b=""></s]<>
Question 1d (d)	
(i) Explain the statement 'the first excitation energy of the hydrogen atom is 10.2 eV'	[]]
(ii) The ground state of hydrogen is -13.6 eV. Calculate the speed of the slowest electron that could cause this excitation of a hydrogen atom.	[1]
	[2]
[3 mark	(s]

Question 2a

 $\label{eq:Aradioactive} \ \text{A radioactive nucleus} \ \frac{229}{85} X \ \text{undergoes a beta-minus decay followed by an alpha decay to form a daughter nucleus} \ \frac{A}{Z} Y.$

(a)

Write a decay equation for this interaction and hence determine the values of A and Z.

[2]

[2 marks]

Question 2b

Thorium, $^{90}_{232}$ Th decays to an isotope of Radium (Ra) through a series of transformations. The particles emitted in successive transformations are:

(b)

Determine the resulting nuclide after these successive transformations.

[3]

[3 marks]

Question 2c

Through a combination of successive alpha and beta decays, the isotope of any original nucleus can be formed.

(c)

Explain the simplest sequence of alpha and beta decays required to do this

[3]

[3 marks]

Question 2d

A nucleus of Bohrium $^{X}_{Y}Bh$ decays to Mendelevium $^{255}_{101}Md$ by a sequence of three alpha particle emissions.

(d)

Determine the number of neutrons in a nucleus of ${}^{\!X}_{\!Y}\!Bh$

[2]

[2 marks]

Question 3a

The table shows some of the isotopes of phosphorus and, where they are unstable, the type of decay.

Isotope	²⁹ P	³⁰ P	31 P 15	32 P 15	33 P 15
Type of decay	β^+	eta^+	stable		β^-

(a)

 $State\ whether\ the\ isotope\ _{15}^{32}P\ is\ stable\ or\ not.\ If\ not,\ determine,\ with\ a\ reason,\ the\ type\ of\ decay\ it\ experiences.$

[3]

[3 marks]

 $Head to \underline{savemyexams.co.uk} for more a we some resources\\$

Question 3b

The isotope of phosphorus $^{30}_{15}P$ decays into an isotope of silicon, $^{A\!S}_{Z}i.$

(b)

Write a decay equation for this decay, finding the values of A and Z, and explain why each emission product occurs.

[3]

[3 marks]

Question 4a

The radioactive isotope uranium-238 decays in a decay series to the stable lead-206.

The half-life of $^{238}_{92}$ U is 4.5×10^9 years, which is much larger than all the other half-lives of the decays in the series.

A rock sample, when formed originally, contained 6.0 \times 10²² atoms of $^{238}_{92}$ U and no $^{206}_{82}$ Pb atoms. At any given time, most of the atoms are either $^{238}_{92}$ U or $^{206}_{82}$ Pb with a negligible number of atoms in other forms in the decay series.

(a) Sketch on the axes below the variation of number of $^{238}_{92}$ U atoms and the number of $^{206}_{82}$ Pb atoms in the rock sample as they vary over a period of 1.0 × 10¹⁰ years from its formation. Label your graphs U and Pb.

[2]

[2 marks]

Question 4b

A certain time, t, after its formation, the sample contained twice as many $^{238}_{92}$ U atoms as $^{206}_{82}$ Pb atoms.

(b) Show that the number of $^{238}_{92}$ U atoms in the rock sample at time t was 4.0×10^{22} .

[2]

[2 marks]

Question 4c

The ratio of the number of lead nuclei N_{p_b} to the number of uranium nuclei N_{II} at some time t is given by:

$$\frac{N_{Pb}}{N_{II}} = e^{\lambda t} - 1$$

 λ is the decay constant and has a value of 1.54 x 10⁻¹⁰ years.

(c)

Calculate the time taken (in years) for there to be twice as many $^{238}_{92}U$ atoms as $^{206}_{82}Pb$ atoms.

[2]

[2 marks]

Question 4d

Lead-214 is an unstable isotope of lead-206. It decays by emitting a β^- particle to form bismuth-214 (Bi)

Bismuth is also unstable and has two decay modes:

- Emitting an α particle to form thallium-210 (TI) + energy
- Emitting a β particle to form polonium-214 (Po) + energy

(d)

Write decay equations for the decay chain of lead-214 to thallium-210 and to polonium-214. Comment on the nature of the energy released.

[4]

[4 marks]

 $Head to \underline{save my exams.co.uk} for more a we some resources$