

3.7 Inverse & Reciprocal Trig Functions

Question Paper

Course	DP IB Maths
Section	3. Geometry & Trigonometry
Торіс	3.7 Inverse & Reciprocal Trig Functions
Difficulty	Hard

Time allowed:	80
Score:	/62
Percentage:	/100

Question 1

If $x = \sin\left(\frac{2\pi}{3}\right)$ find

(i)
the exact value of cos(3 arccos x).
(ii)
the exact value of cos(arcsin x).

[6 marks]

Question 2a

(a) Sketch the graph of $y = \operatorname{cosec} x$ for $-\pi \le x \le 2\pi$

[2 marks]

Page 2 of 9

Question 2b

(b) Given that 2 cosec $\theta = -\frac{9}{4}$ and $-\pi < \theta < -\frac{\pi}{2}$, find the exact value of $\cot \theta$.

[4 marks]

Question 3a

(a)

Show that the equation $33 + \frac{6 \cos x}{\cot^2 x} = \sqrt{2}(11 \sec x + 2)$ can be rewritten in the form $a\cos^2 x + b\cos x + c = 0$.

[4 marks]

Question 3b

(b) Hence solve $33 + \frac{6 \cos x}{\cot^2 x} = \sqrt{2} (11 \sec x + 2)$ for the interval $-\frac{3\pi}{2} \le x \le \pi$.

[3 marks]

Page 3 of 9

Question 4a

(a) Show that the equation

$$\cot 2\theta \sin \theta + \frac{8}{\sec \theta} = \sin \theta$$

can be rewritten as

.

 $\tan^2\theta + 2\tan\theta - 17 = 0.$

[5 marks]

Question 4b

(b)

Hence solve the equation $\cot 2\theta \sin \theta + \frac{8}{\sec \theta} = \sin \theta$ for all values of θ in the interval $-\pi \le \theta \le \frac{\pi}{2}$.

[3 marks]

Question 5a

Consider the function $f(x) = \frac{1}{2} \arccos x + 1$, where $-1 \le x \le 1$.

(a)

Sketch the graph of f indicating clearly any intercepts with the coordinate axes and any maximum and minimum values.

[3 marks]

Question 5b

(b) Write down the domain of $f^{-1}(x)$.

Question 5c

(c) Find an expression for $f^{-1}(x)$.

[1 mark]

[2 marks]

Question 6a

Consider the function $f(x) = \arccos x$, $-1 \le x \le 1$.

(a)

State whether the function is f even, odd or neither. Give a reason for your answer.

[2 marks]

Question 6b

A second function g is such that g(x) = 3f(x) + a, where g(x) is an odd function.

(b) Find the value of *a*.

Question 6c

(c) Sketch the graph of g(x) and state the range of g.

[3 marks]

[2 marks]

Question 6d

(d) State whether $g^{-1}(x)$ will also be odd. Give a reason for your answer.

Page 6 of 9

[2 marks]

Question 7a

(a) Show that $\frac{\cot\theta\sec^2\theta}{\csc\theta} \equiv \sec\theta$.

[2 marks]

Question 7b

(b)

Hence solve in the range $-\pi \le \theta \le 2\pi$, the equation $\frac{\sqrt{3}\cot\theta \sec^2\theta}{\csc\theta} = 2$.

[3 marks]

Question 8a

Consider the function defined by $f(x) = \sec(2 \arcsin x)$.

(a) Find the domain of f.

[2 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 8b

(b) Show that f(x) can be written as $\frac{1}{1-2x^2}$ for all x in its domain.

[6 marks]

Question 9a

(a) Show that the equation

$$3\left(\frac{1}{\cot^2 x} - \frac{3}{\cos x}\right) = 8 \sec x + 25$$
$$(a \sec x + b)(\sec x + c) = 0.$$

can be written in the form

[4 marks]

Question 9b

a)

Hence solve the equation $3\left(\frac{1}{\cot^2 x} + \frac{3}{\cos x}\right) = 8 \sec x + 25$ in the interval $-270^\circ \le x \le 90^\circ$. Give your answers correct to 1 decimal place.

[3 marks]

Page 9 of 9