2.3 Functions Toolkit

Question Paper

Course	DP IB Maths
Section	2. Functions
Topic	2.3 Functions Toolkit
Difficulty	Very Hard

Time allowed: 80

Score: /65

Percentage: /100

Question la

The functions f and g are defined such that $f(x) = 9x - 3x^2 - 3$ and $g(x) = -\frac{66 + 2x}{3}$, both for $x \in \mathbb{R}$.

(a) Find $(g \circ f)(x)$, giving your answer in the form $(g \circ f)(x) = a(x-p)(x-q)$.

[3 marks]

Question 1b

(b) Hence, or otherwise, find the *x*-intercepts of the graph of $y = (g \circ f)(x)$.

[1 mark]

Question 1c

Let h(x) = 1 - 2x.

(c) Find the distance between the *y*-intercept of the graph of $y = (f \circ h)(x)$ and the positive *x*-intercept of the graph of $y = (g \circ f)(x)$. Your answer should be given as an exact value.

[6 marks]

Question 2a

Let the function f be such that $f(x) = \sqrt{5x^2 - 11x + 6.05}$.

Given that the inverse function f^{-1} exists, and that the domain of f is as large as possible,

(a) suggest a domain for f and write down the corresponding range.

[4 marks]

Question 2b

(b) Based on your answer to part (a), find $f^{-1}(\sqrt{22.05})$.

[2 marks]

Question 3a

Let
$$f(x) = \sqrt{-3x^2 + 8x + 16}$$
.

(a) Write down the coordinates of the *y*-intercept of the graph of y = f(x).

[2 marks]

Question 3b

Given that f has the largest possible valid domain,

(b) find the domain and range of f.

[6 marks]

Question 4a

Let the function f be defined by $f(x) = (2x^2 - 5x - 12)^{-\frac{1}{2}} - k$, where k is a constant and where f has the largest possible valid domain.

(a) Find the domain of f.

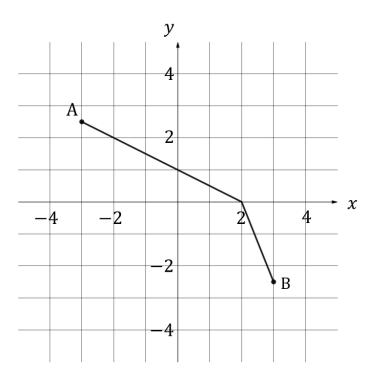
[2 marks]

Question 4b

(b) Given that that $\lim_{x\to\infty} f(x) = -7$, find the value of k.

[1 mark]

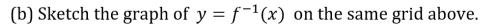
Question 4c


(c) Write down the equations of any vertical and/or horizontal asymptotes on the graph of y = f(x).

Head to <u>savemy exams.co.uk</u> for more awe some resources

Question 5a

The following diagram shows the graph of y = f(x), for a function f that has the domain $-3 \le x \le 3$. Point A has coordinates (-3, 2.5) and point B has coordinates (3, -2.5). The x-intercept of the function is (2, 0) as shown.



f can be written as a piecewise function, where each of the two pieces is a linear function and where the domain of the first function is $-3 \le x \le 2$.

(a) Write down f(x) as a piecewise function.

[4 marks]

Question 5b

[3 marks]

Question 6a

Consider the function h defined by $h(x) = -4x^2 + 24x + 8$, $x \in \mathbb{R}$.

(a) Rewrite h(x) in the form $a(x+b)^2 + c$, where $a, b, c \in \mathbb{Z}$.

[2 marks]

Question 6b

(b) Given that $f(x) = (x-3)^2$ and that $(g \circ f)(x) = h(x)$, find g(x).

Question 7a

The functions f and g are defined such that $f(x) = \frac{3-2x}{5}$ and g(x) = 4x - 7, both for $x \in \mathbb{R}$.

- (a) Giving your answers in the form y = mx + c, find
 - (i) $(g \circ f)(x)$
 - (ii) $(f \circ g)(x)$.

[4 marks]

Question 7b

(b) Describe a single transformation that would map the graph of $y = (g \circ f)(x)$ onto the graph of $y = (f \circ g)(x)$.

[2 marks]

Question 7c

(c) Given that $(g \circ f)^{-1}(p) = 2$, find the value of p.

Question 8a

Let the functions f and g be defined by $f(x) = \frac{9}{4}x^2 - 1$ and $g(x) = x^2 - 2$, both for $x \ge 0$.

- (a) Find
 - (i) $f^{-1}(x)$
 - (ii) $g^{-1}(x)$.

[2 marks]

Question 8b

(b) Find $(f \circ g)(x)$ in the form $ax^4 + bx^2 + c$.

[2 marks]

Question 8c

(c) Solve the equation $(f \circ g)(x) = 0$.

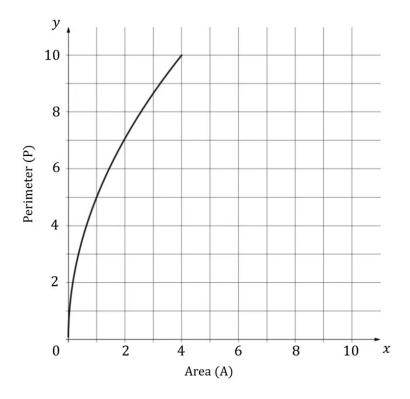
[3 marks]

Question 9a

A rectangle has length l = 4x and width w = x.

- (a) Find an expression for
 - (i) the perimeter of the rectangle, P, in terms of x.
 - (ii) the area of the rectangle, A, in terms of x.

[2 marks]


Question 9b

(b) Show that $P(A) = 5\sqrt{A}$.

[2 marks]

Question 9c

The graph of the function P, for $0 \le A \le 4$, is shown below.

(c) On the grid above, draw the graph of the inverse function P^{-1} .