

5.11 MacLaurin Series

Question Paper

Course	DP IB Maths
Section	5. Calculus
Торіс	5.11 MacLaurin Series
Difficulty	Very Hard

Time allowed:	130
Score:	/102
Percentage:	/100

Question la

(a)

Find the first three non-zero terms of the Maclaurin series for $\tan x$ in ascending powers of x.

[6 marks]

Question 1b

(b)

Confirm that the result from part (a) gives the same type of function – either even or odd – as $\tan x$.

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question lc

(c)
Hence approximate the value of tan 1
(i)
by substituting the value x = 1
(ii)
by substituting another positive value of x .

[4 marks]

Question 1d

(d)

(i)

Compare the approximations found in part (c) to the exact value of tan 1.

(ii)

Explain briefly the reason for the difference in accuracy between the two approximations.

[4 marks]

Question 2a

(a) Find the first four non-zero terms of the Maclaurin series for e^{-2x} in ascending powers of x.

[4 marks]

Question 2b

(b) Hence approximate the value of \sqrt{e} and compare this approximation to the exact value.

[3 marks]

Question 2c

(c) Explain how the accuracy of the Maclaurin series approximation in part (b) could be improved.

[1 mark]

Question 3a

(a) Find the Maclaurin series for $e^{x}(\sin 3x + \cos \sqrt{x})$ in ascending powers of x, up to and including the term in x^{3} .

Page 4 of 13

[5 marks]

Question 3b

(b)

Hence find the first three non-zero terms, in ascending powers of *x*, of the Maclaurin series for

$$e^{x}\left(2\sin 3x + 6\cos 3x + 2\cos\sqrt{x} - \frac{\sin\sqrt{x}}{\sqrt{x}}\right)$$

[4 marks]

Question 4a

Consider the function f defined by $f(x) = e^{3x} \cos 2x$.

(a)

Show that f''(x) = pf(x) + pf'(x), where p and q are constants to be determined.

[5 marks]

Question 4b

(b) Hence find the Maclaurin series for f(x) in ascending powers of x, up to and including the term in x^5 .

[3 marks]

Question 4c

(c) Show that $\int f(x) dx = \frac{e^{3x}}{13} (2 \sin 2x + 3 \cos 2x) + c$.

[7 marks]

Question 4d

(d)

Hence find the first seven terms, in ascending powers of x, of the Maclaurin series for $e^{3x}(2 \sin 2x + 3 \cos 2x)$.

[4 marks]

Question 5a

(a) Find the Maclaurin series for $e^{\frac{1}{2}x^2}$ in ascending powers of x, up to and including the term in x^8 .

[4 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 5b

The probability density function for the random variable $X \sim \mathrm{N}(0,1)$ is

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

(b)

Use the result of part (a) to find an approximation for the probability $P(0 \le X \le 1)$.

[3 marks]

Question 5c

(c) Determine the percentage error of your approximation from part (b).

[3 marks]

F Save My Exams Head to <u>savemy exams.co.uk</u> for more a we some resources

Question 6

Consider the function f defined by

$$f(x) = \frac{1}{\sqrt{1 - 2x^2}}$$

By first determining the Maclaurin series of f(x) in ascending powers of x, up to and including the term in x^6 , show that

$$\sin\frac{\pi}{4} \approx 0.70710675$$

Be sure to justify that the Maclaurin series is valid for the value of x used to produce your approximation.

[9 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 7a

Consider the differential equation

 $y' = \cos x + xy^2$

together with the initial condition y(0) = 1.

(a)

Find expressions for y'', y''', $y^{(4)}$ and $y^{(5)}$. Each should be given in terms of x and y and of lower-order derivatives of y.

[5 marks]

Question 7b

Let f(x) be the solution to the differential equation above with the given boundary condition, so that y = f(x).

(b)

Find the first six terms in ascending powers of x of the Maclaurin series for f(x).

[7 marks]

Question 7c

(c) Hence find an approximation for the value of y when x = 0.1.

[2 marks]

Question 8a

Consider the differential equation

$$y' = \frac{y}{x+1} + 1, \qquad x > -1$$

with the initial condition y(0) = -1.

(a)

By first finding expressions for y'', y''', and $y^{(4)}$ in terms of x, y and lower-order derivatives of y, find a Maclaurin series for the solution to the differential equation with the given boundary condition, in ascending powers of x up to and including the term in x^4 .

[9 marks]

Question 8b

(b)

Solve the differential equation with the given boundary condition analytically to find an exact solution in the form y = f(x).

[5 marks]

Page 12 of 13

Question 8c

(c)

Find the first four non-zero terms of the Maclaurin series for the answer to part (b), and confirm that they match those in the answer to part (a).

[3 marks]